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Preface 
 
The California Demand Side Management Advisory Committee (CADMAC) was established 
by the California Public Utilities Commission (CPUC).  The CADMAC was charged with, 
among other things, the continuing overall development of the Protocols and Procedures for 
the Verification of Costs, Benefits, and Shareholder Earnings from Demand-Side 
Management Programs, better known simply as the Measurement and Evaluation Protocols.  
Various subcommittees were also established at the same time that were responsible for 
addressing very specific methodological issues that arose in the implementation of the 
protocols.  One of these subcommittees, the Retrofit Modeling Standards Subcommittee, was 
responsible for addressing issues surrounding statistical and engineering modeling and 
metering.  In 1994, the original report, Quality Assurance Guidelines for Statistical and 
Engineering Models, was prepared at the request of this Subcommittee whose members at 
that time were: 
 

John Peterson, Chair 
Southern California Edison Company 

 
Ben Bronfman 
Consultant to the CPUC Division of Ratepayer Advocate 

 
Sharim Chaudhury 
Southern California Gas Company 

 
Leon Clarke 
Pacific Gas & Electric Company 

 
Adrienne Kandel 
California Energy Commission 

 
Dean Schiffman 
San Diego Gas & Electric Company 

 
 
The authors of the original report were Richard Ridge, who at the time was employed by 
Pacific Consulting Services, Dan Violette, who at the time was employed by Xenergy, Inc., 
and Don Dohrman of ADM.  In May of 1997, the QAG was revised to include a discussion 
of methods for estimating net-to-gross ratios based only on participant self reports. This 
addition, prepared by Katherine Randazzo and Richard Ridge, was needed since for some 
programs, e.g., industrial audits and rebates, the Protocols do not require a comparison group 
comprised of non-participants in order to estimate net impacts or net-to-gross ratios. The title 
of the revised version is Quality Assurance Guidelines for Statistical, Engineering, and Self-
Report Methods for Estimating DSM Program Impacts.  
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This current revision has been prepared by Richard Ridge of Ridge & Associates, Katherine 
Randazzo of KVDR, Inc., Dave Baylon and Jonathan Heller of Ecotope, Inc., and Kevin 
Geraghty. This revision contains an entirely re-written Chapter 3, Quality Assurance 
Guidelines for Engineering Models, and important revisions to Chapter 4, Quality Assurance 
Guidelines for Estimating Net-To-Gross Ratios Using Participant Self Reports. These 
revision were done under the guidance of the Retrofit Modeling Standards Subcommittee 
whose current members are: 
 

Pierre Landry, Chair 
Southern California Edison Company 

 
Randy Pozdena 
Consultant to the CPUC Office of Ratepayer Advocate 
EcoNorthwest 

 
Jim Green 
Southern California Gas Company 

 
Chris Ann Dickerson 
Pacific Gas & Electric Company 

 
Adrienne Kandel 
California Energy Commission 

 
Dean Schiffman 
San Diego Gas & Electric Company 
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1 Introduction 
 
The California Public Utilities Commission (CPUC) recently adopted the Protocols and 
Procedures for the Verification of Costs, Benefits, and Shareholder Earnings from 
Demand-Side Management Programs (Protocols) for the measurement and evaluation 
(M&E) of DSM programs. These guidelines focus on the critical elements of M&E 
such as load impact estimation models, sampling, and metering and are specific to 
various combinations of customer sectors, program types, and end uses. These 
standards are understood to be minimal and are in many cases quite general. For 
example, the Protocols state that the load impact models for commercial retrofit 
programs may be some variant of allowable CDA model types1, or a calibrated 
engineering model, both possibly supplemented by an engineering simulation model. In 
addition, both participants and nonparticipants must be examined to estimate net 
program load impacts, and the sample sizes must be at least 350 for each group of non-
residential customers or 200 for each group of residential customers. However, the 
Protocols are for the most part silent regarding such detailed methodological issues as 
the actual specification of CDA models, testing of statistical assumptions underlying 
CDA models, and power analysis. CE models and engineering models also lack any 
methodological guidance. Thus, simply adhering to these minimal standards contained 
in the Protocols is no guarantee that an analyst is doing a professionally respectable 
job.  

While one could simply ask analysts to guarantee that they adhered to the methodologi-
cal guidelines contained in standard textbooks, this may not be sufficiently reassuring 
either to utility or regulatory staff. Thus, rather than simply trust analysts to follow the 
guidance contained in the basic methodological textbooks, our preference has been to 
develop what is called the Quality Assurance Guidelines (QAG) that requires analysts 
to indicate specifically how they addressed basic methodological issues. This approach 
is clearly consistent with the white paper prepared by the ADSMP Subcommittee on 
Evaluation Standards and Guidelines and the Program Evaluation Standards prepared 
in 1994 by the Joint Committee on Standards for Educational Evaluation, in that it is 
not very prescriptive. That is, the Subcommittee members have thus far prepared 
practice and reporting standards rather than highly prescriptive methodological 
standards. Their preference has been to require analysts to describe how they addressed 
certain key issues rather than to require analysts to address these issues in a specific 
way. For example, while there are many varieties of regression-based analyses, there 
are very basic methodological issues that often come up, such as collinearity, and that 
must be addressed if one is to do a professionally respectable analysis. The guidelines 
only require analysts to test for collinearity but do not tell them how to test for it, and, 
if present, does not prescribe the appropriate remedy. This is the sort of guidance that 
                                                           
1 For a more detailed definition of the various model types currently under discussion, please see 

"An Evaluation of Statistical and Engineering Models for Estimating Gross Energy Impacts" by 
Ridge et al., 1994. 
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occupies a position somewhere between the minimal standards represented by the 
Protocols and the highly detailed guidelines contained in basic methodological texts. 
The QAG also asks where certain information such as sample dispositions can be found 
in the report. 

It follows that the QAG must focus on those methodological issues on which there is 
general agreement regarding their importance within the social science and engineering 
communities. The QAG will also refer analysts to texts in which more detailed guid-
ance can be found regarding all the issues addressed. Adherence to such guidelines still 
allows the final models to be shaped by the interaction of the situation, the data and the 
analyst. It is this very interaction and the resulting plethora of legitimate methodolog-
ical choices that prohibited the creation of a more detailed and prescriptive QAG.  

The QAG can be used in several ways. First, they could be included as a part of every 
M&E request for proposals (RFP) so that prospective bidders will know that they will 
be held accountable for conducting a sound analysis. Second, utility project managers 
and regulators reviewing an evaluation report containing a completed QAG can quickly 
assess whether the analyst at least addressed the most basic methodological issues. This 
latter point is especially important since neither utilities nor regulators have the time or 
personnel to carefully scrutinize every written evaluation report let alone attempt to 
replicate the results of all these studies. Of course, the details of how they addressed 
these issues should be contained either in the very detailed documentation that would 
be contained in the technical appendix of any evaluation report or in the work papers. 
Finally, they can be used to create a common language to facilitate communication 
among utilities, regulators and consultants. 

Analysts should not be expected to provide information on every model or approach 
they attempted during the analysis. One can get much of this detailed information from 
the analysis logs that every competent analyst should keep or from the computer output 
itself. Rather, the purpose of the QAG is to characterize what was typically done for the 
final models within each model type.  

Included in the original report were the QAGs for statistical and engineering models. In 
May of 1997, the QAG was revised to include a discussion of methods for estimating 
net-to-gross ratios based only on participant self reports. This addition was needed 
since for some programs, e.g., industrial audits and rebates, the Protocols do not require 
a comparison group comprised of non participants in order to estimate net impacts or 
net-to-gross ratios. 

There are several features of these QAGs that merit discussion. First, the issues ad-
dressed are issues that a variety of basic social science and engineering methodological 
texts also address. That is, there appears to be a consensus that these issues are 
important. Second, because the QAG is supposed to save time, it should not simply be 
an exact replication of what is in the report itself. On the other hand, for the same 
reason, it should not simply refer to the appropriate part(s) of the report. The answers, 
while brief, should provide enough information to reassure reviewers that a given 
methodological issue was recognized and dealt with in a professionally responsible 
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manner. Of course, only a pretest can determine whether this format will work. Finally, 
because some respondents may not be familiar some of the issues addressed or the 
terms used, references have been provided that should provide reasonably clear 
explanations.  
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2 Quality Assurance Guidelines for Statistical Models 
2.1 Quality Assurance Guidelines for Conditional Demand Analysis (CDA) 

Models2 
 
The QAG for CDA models is presented on the following pages. It is designed to cover 
the estimation of both net and gross impacts. With respect to net impacts, the issues 
addressed are well within the traditional research design framework involving the com-
parison of kWh consumption of participants and nonparticipants while attempting to 
control statistically for any compositional differences. Throughout the QAG, the obser-
vations participating in a regression model, or a sample, or in any other analysis 
framework are referred to simply as subjects, whether they are customers, accounts, or 
buildings and whether they are participant or comparison group members. Thus, how the 
questions are answered will depend on the type of study conducted.  

This QAG should be completed for every CDA model type used in a given M&E study. 
However, a utility is not required to complete this form for every model attempted 
throughout the entire study within a given model type. One can get such detailed infor-
mation from the analysis logs that every competent analyst should keep or from the 
computer output itself. Rather, in most cases, the purpose of the QAG is to characterize 
what was done for the final model(s) within a given model type. You should answer each 
of the questions briefly on separate pieces of paper.3 Please keep your answers brief. You 
may refer the reviewer to specific sections of the evaluation report itself for more detail 
or perhaps for a complete and coherent answer to the question. Having said this, the 
reviewer should not have to piece together the answer from more than one section of the 
report. In other words, if the answer is in more than one section of the report, you must 
attempt to integrate the information from the report and provide the answer in a brief 
response. Remember, your summary should be much shorter than the discussion 
contained in the full report. 

Note that some of these questions may not be relevant for a given study, thus making 
"not applicable (NA)" a legitimate response. For example, if you conducted a cross-
sectional analysis, you should check "NA" for those questions relating to serial 
correlation.  

                                                           
2 The definition of CDA is a collection of regression-based approaches that specify energy 

consumption as conditioned on any number of measured variables, but not a complete inventory of 
equipment or other demand sources. All of the regression-based approaches described in "An 
Evaluation of Statistical and Engineering Models for Estimating Gross Energy Impacts" by Ridge et 
al., 1994 qualify as CDA approaches. Other model types such as the statistical comparison method 
(SCM) and the calibrated engineering method (CEM) were considered sufficiently different from 
CDA models as to warrant their own guidelines.  

3 Each utility will provide a diskette containing all of the questions listed in the QAG. One can use 
this diskette to record all responses.  
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Finally, you may not be familiar with certain terms or concepts contained in the QAG. To 
assist you in completing the QAG, numbers are placed next to some of the section 
headings and/or questions that refer analysts to one or more methodological references in 
which the particular issue raised in the section or question is addressed. When 
appropriate, page numbers are provided. Of course, there are other references that could 
be used but the ones listed were considered adequate to describe the basic issues and their 
relevance as well as to provide methodological guidance in handling any related 
problems that may arise. 
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Quality Assurance Guidelines: 

Conditional Demand Model Types 

 

Date ________________________ 

 

Utility Program ________________________________  

 

Utility Project Manager_______________________________ 

 

Lead Analyst _______________________________________ 

 

Employer __________________________________________ 

 

CPUC Study Identification Number __________   

 

Sector(s) ______________________________________________ 

Please indicate the sectors, programs, end uses, and measures for which estimates of 
gross and/or net impacts are provided. If impacts were estimated for other combinations 
of variables (e.g., weather zone or building type) please specify.  

Are any of the impacts, adjusted for spillover? If yes, please describe.  

             

Period of Time Covered by the Analysis _________      
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Applicable Table(s) from M&E Protocols __________     

Frequency of data (e.g., hourly, daily, monthly)       

A. MODEL TYPES 

1. Please check the model types used  

 a. Classic-Conditional Demand Analysis (C-CDA)  
  using cross-sectional data and dummy variables  
  to capture the impact of the program or  
  installations       _____ 

 
b. C-CDA using cross-sectional data and                              
incorporating prior engineering estimates  

  of impacts       _____ 
 
 c. C-CDA using cross-sectional time series  
  (CSTS) data and dummy variables to capture the  
  impact of the program or installations    _____ 
 
 d. C-CDA CSTS data and incorporating prior  
  engineering estimates of impacts    _____ 
  
 e. Conditional Demand Analysis (CDA) using CSTS data 
  and dummy variables to capture the impact of the  
  program or installations     _____ 
 
 f. CDA using CSTS data and incorporating prior    
 engineering estimates of impacts    _____ 
 
 
 g. CDA with pre/post design and dummy variables to    
  capture the impact of the program or installations  _____ 
 
 h. CDA with pre/post design and incorporating prior     
  engineering estimates of impacts    _____ 
 

       i. Other types of regression models used (please describe):  
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________ 
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B. MODELS 
1. Please indicate where the forms of all the final models that were used can be found. 

Also, the forms of all the competing models that were used in the final stages of the 
analysis but were not selected as the final models are of interest. Please indicate 
where these can be found. 

C. SAMPLE 
1. Did you attempt to estimate models using the population of subjects or a sample? If a 

sample was used, describe the sample design. For example, what were stratification 
variables, if any, was the sample random, was the sample proportional, and how were 
the weights calculated? 

 
1. What was the size of the outbound sample? For example, how many questionnaires 

were initially mailed out, telephone contacts attempted, on-sites attempted?  
 
2. What was the size of the achieved sample? For example, how many completed 

questionnaires were returned, telephone interviews completed, on-sites completed? 
 
3. What were the response rates for each of the major data collection efforts? For 

example, the response rate to a mail survey might be 50%, while for a telephone 
survey it might be 65%, and for on-site surveys it might be 85%.  

 
4. Please indicate where more detail can be found on the sample dispositions for all 

major data collection efforts such as telephone interviews or mail surveys, on-site 
surveys, and billing data extractions. A sample disposition is simply a description of 
what happened to each effort to collect data (e.g., no telephone number, language 
barrier, refused, completed, etc., missing data in program tracking, billing or weather 
databases). 

 
5. Describe any efforts to estimate the extent of non-response bias. For example, in 

order to measure any bias, did you compare the kWh consumption or other customer 
characteristics for respondents versus non respondents? 

 
6. Describe your efforts to correct for non-response bias. For example, were respondents 

weighted in any way to correct for any bias? 
 
7. Were procedures used to determine the size of the samples in order to achieve to 

specific levels of precision at given levels of confidence? If yes, what assumptions, 
i.e., expected variance or error ratio if model based sampling is used, or effect size in 
traditional power analysis, were used? 

 
8. Describe key characteristics of subjects that you used in final models. For example, 

were they all installers of efficient equipment or were they simply exposed to some 
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treatment such as an audit? If residential were they single family or multi-family? 
What was the average income? What was the distribution across weather zones? If 
nonresidential, what building types and weather zones were represented? 

 

D. DATA  
1. Describe the data that were collected to support the analysis  
 
2. Describe the source(s) and method(s) of collecting these data.  
 
3. Indicate where the description can be found of how these data were manipulated in 

order to create the analysis datasets. Also, describe what screens were used to 
eliminate customers from the analysis and how many customers were eliminate as the 
result of each screen. 

 
4. Where can all data collection instruments be found? 
 
5. Where in the report can a flowchart be found illustrating the direct and indirect 

relationships of the data collected to each other and to the final estimates of impacts. 
If one is not available, please provide one. 

 

E. SPECIFICATION AND ERROR 

Misspecification 
1. What were the initial specifications of the models and their rationale? If the 

specifications of these final models are different than these initial specifications, 
please explain what prompted the change. For example, were changes prompted by 
too much missing data for key variables, or the emergence of logical or theoretical 
inconsistencies? 

 
2. Explain what you did to address the problem of misspecification. Describe the 

diagnostics carried out, the solutions attempted and their effects. If left untreated, 
please explain why.  

Measurement Error 
1. Were there substantial errors in measuring important independent variables? If so, 

what was done to minimize this problem. For example, was a weighted regression 
approach or an instrumental variables approach used? 

Autocorrelation 
1. If time series models were estimated, was autocorrelation a problem. If left 

uncorrected, biased estimates of standard errors may result. Under certain conditions, 
biased estimates of program impacts may also result. Please explain what you did to 
identify the problem in both the initial, intermediate, and final stages of the analysis 
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and what you did to mitigate its effects. Describe the diagnostics carried out, the 
solutions attempted and their effects. If left untreated, please explain why. 

 
2. What was done to ensure the stability of the solution to serial correlation during the 

final estimation stages. 
 
3. Were any checks done to determine if the pattern of autocorrelation differs by 

customer or building type and thus require a different type of treatment. For example, 
schools may have a different pattern than large office buildings. If differences were 
found among different sub groups, was autocorrelation treated differently for each of 
these groups? 

 
4. Did the solution for autocorrelation negatively affect the solution for 

heteroskedasticity ? If so, what was done? 

Heteroskedasticity  

1. If heteroskedasticity was a problem, please explain what you did to mitigate its 
effects. 

 
2. Describe the diagnostics carried out, the solutions attempted and their effects. If left 

untreated, please explain why. 
 
3. Did the solution for heteroskedasticity negatively affect the solution for autocor-

relation? If so, what was done? 
 
4. If the solution to heteroskedasticity involved re-weighting of data, how did this 

weighting process interact with the relative weights or expansion weights developed 
on the basis of the sampling plan and nonresponse problems? 

 

F. COLLINEARITY 
1. Explain what you did to address the problem of collinearity as it may have surfaced in 

the initial, intermediate, and final stages of your analysis. Describe the diagnostics 
carried out, the solutions attempted and their effects.  

 
2. What level of collinearity did you find acceptable and why? For example, some 

collinearity among regressors may be acceptable when the regressors are theoretically 
required, or when the regressors are necessary to represent a polytomy.  

G. TESTS FOR EXOGENEITY 

1. Tests to determine the exogeneity/endogeneity of variables are not routinely done, 
but, depending on the situation, they can be useful. For example, if any bias were 
suspected due to self-selection, such tests, described by Kennedy (1992) might be 
called for. 
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H. INFLUENTIAL DATA 
1. Describe any influential-data diagnostics that were performed in order to identify 

outliers?  
2. If outliers were identified, how were they identified, how many were there, and how 

were they handled? 

J. MISSING DATA 

1. Describe how missing data were handled. For example, were cases with missing data 
dropped? Was mean substitution used to address the missing data problem or were 
other more acceptable techniques used? 

K. TRIANGULATION 

1. If more than one estimate of impact is provided, how have the results been combined 
to form a single estimate?  

L. WEATHER 

1. Describe how weather normalization was handled. For example, were the kWh values 
weather-normalized prior to initiating the analysis or were models first estimated 
using the original kWh data and recorded temperature and later evaluated using long-
run temperature data? In either case what was the source of the long-run weather? 

 
2. Did the normalization adjust for heating degree-days only, cooling degree-days only, 

or both? 
 
3. What degree-day base was used for heating and for cooling? If the base was 

customer-specific, how was the base selected? 
 
4. Are there potential seasonal biases related to the pre- and post- period dates? For 

example, if one or more cooling seasons exist in the pre period while none exists in 
the post period, the savings estimates may be overestimated.  

 
5. On a customer-specific basis, how was the choice made between a heating-only, 

cooling-only, or heating-cooling normalization model? 

M. ENGINEERING PRIORS 

1. If prior engineering estimates of usage or savings were used in the models, what was 
the source(s) of the priors? 

N. Precision 

1. Where are the methods for calculation of key savings parameters and their standard 
error reported? For example, using standard statistical software, standard errors are 
always available on key parameters in a regression model while standard errors for 
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other parameters like net-to-gross ratios are often calculated during some post-
processing of regression results. 

 
 

O. Comparison Group  

1. If a comparison group4 was not used to help estimate gross savings, describe what 
was done to control for the effects of background variables such as economic and 
political activity that may account for any increase or decrease in consumption in 
addition to the DSM program itself.  

2. If you used a comparison group to estimate either gross or net impacts, describe what 
was done to control for any compositional differences and any suspected self-
selection bias. 

3. If a comparison group was not used to estimate net impacts, please see Section 4 for a 
description of guidelines for estimating net-to-gross ratios using only the participant 
group’s self-reports. 

 
 

2.2 Quality Assurance Guidelines for Calibrated Engineering Methods 
(CEM) 

 

2.2.1 Definition 

Calibrated Engineering Methods use initial engineering estimates of impacts combined 
with a “statistical verification” step. This verification step produces an estimated real-
ization rate. The application of these methods involves drawing a sample of program 
participants; then, an in-field metering or enhanced/in-depth engineering analysis based 
on other measures of customer consumption is conducted at each participant site. These 
analyses essentially “verify” or serve as “audited” values of the initial engineering 
estimates. A ratio is calculated between the audited values and initial engineering 
estimates. For example, if the audited values are, on average, 75% of the initial engineer-
ing estimates, then the ratio is .75. If the sample of customers is drawn randomly, then 
the best estimate of what the evaluator (or "auditor") would have found if the analysis 
could have been conducted on the entire population is .75 times the sum of the initial 
estimates for the population. One strength of this method is that, as long as the sampling 
is random, it is a relatively robust estimator. The types of assumptions required in the 
development of a regression model are not required by this method.5 

                                                           
4 The M&E Protocols do not require a comparison group for estimating gross savings.  
5 It is important to note that CEM is different in concept from the calibration of engineering based 

energy simulation models. These engineering models provide estimates of levels of energy use and 
therefore the models are calibrated to observed data on usage levels (e.g., billing data or load 
research data). Impacts are then calculated by two runs of the engineering model—a baseline model 
run and a model run incorporating the energy efficiency measures. 
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A. PROGRAM RELATED AND MEASURE RELATED QUESTIONS 
1. What energy efficiency measures are included in this program? 
 
2. Were realization rates calculated for each measure? If no, what packages or 

combinations of measures were addressed? 
 
3. What period of time is represented by the estimated impacts, i.e., what program 

interval is being estimated by this analysis? 
 
B. SAMPLE AND SAMPLING (to be completed for each estimated realization rate) 

1. What sample size was used to calculate the verified ratio?  
 
2. Explain what procedures were used to help ensure that a random sample was drawn. 
 
3. Were any tests or comparisons made to examine whether the drawn sample was 

“representative” of the population of participants? If yes, please explain. 
 
4. Were any adjustments to the sampling plan made to make the sample more 

“representative?” If yes, please explain. 
 
5. Was a stratified sampling procedure used? If yes, please describe briefly, with 

rationale for stratification choices. 
 
6. Were procedures used to size the samples to target specific precision levels at a given 

level of confidence? If yes, what assumptions, i.e., expected variance or error ratio in 
the case of model based sampling, were used? 

 

C. VERIFICATION/MEASUREMENT METHOD 

1. What procedures were used to verify the kWh and kW impacts for specific sites? 
a) pre/post end-use interval metering? If yes, what was the duration? 
b) spot watt metering pre and interval metering post? If yes, what was the duration? 
c) pre/post spot watt metering with post run-time metering? If yes, what was the 

duration? 
d) engineering analyses? If yes, please explain. 

 
2. Were weather related/seasonal effects estimated? If yes, please explain how. 
 
3. Were interaction effects addressed, for example the heating penalty associated with 

lighting efficiency improvements? If yes, please explain. 
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4. Were changes made to the baseline energy use from which the impacts are estimated, 
e.g., were changes made to account for burned out lights, expansions of space (adding 
on a new wing), changes in use of space, etc.? If yes, please explain. 

 
5. While on-site, were issues of snap back, free-ridership, spillover addressed with the 

customer? If yes, please explain. 
 

D. REPRESENTATION OF RESULTS 
1. Within the sample, was one realization rate estimated for the entire sample, or were 

realization rates allowed to vary by any factor (e.g., magnitude of savings, type of 
building, total energy consumption)? If yes, please explain. 

 
2. After the sample was drawn, were the strata boundaries and associated case weights 

adjusted to reflect the most current information on the population of participants? If 
yes, please explain. 

 
3. Was an analysis of influential data points conducted? If yes, please explain. 

[Note to reviewers: For example, the sample sizes are usually small and it is easy to 
exclude each observation and re-estimate the realization rates to determine whether a 
single observation greatly influences the realization rate estimate. Similarly, potential 
outliers, e.g., savings estimates more that three standard deviations above the mean, 
can be excluded and the realization rate re-estimated. The distribution of savings 
tends to be a skewed distribution often with a few sites having extremely large 
savings estimates. A realization rate is a straight line fitting process, the y/x ratio as 
the slope, and the effect of several points well outside the general range of 
observations could influence the estimate. Many interesting estimation issues are 
involved, e.g., do the sets of observations essentially come from different 
distributions; that is, are they generated from a different underlying process and 
therefore belong in a different analysis.] 
 

4. If influential data points were identified, were they analyzed to see if they were 
unique cases, i.e., did not fall within the definition of the program being analyzed? If 
yes, please explain. 

 
5. Were any drawn sample sites dropped from the analysis for any reason? If yes, please 

explain. 
 
6. Did your analysis present the mean, median, standard deviation and an example 

precision level and confidence interval for each realization rate estimate? 
 

2.3 Quality Assurance Guidelines for STATISTICAL COMPARISON 
METHODS (SCM) 
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2.3.1 Definition 

These approaches, sometimes termed “simple” comparison approaches, involve pre/ post 
comparisons of energy use among program participants. This involves subtracting the 
annual consumption in the “post” period from the annual consumption in the “pre” 
period. However, before this subtraction is done, the energy consumption data must first 
be weather-normalized: the effects of atypical weather are removed to produce what is 
called normalized annual energy consumption (NAC). The simple equation for 
calculating gross impacts for participants is presented below. 

 
 Savings = NAC Pre - NAC Post 
 
One of the more commonly used methods for weather normalization is PRISM, which, 
like many of these comparison methods, typically does not use any data other than 
consumption data and weather data.  

 

A. PROGRAM EFFICIENCY MEASURES 
1. What energy efficiency measures are included in this program? 

2. What proportion of program participants had each energy efficiency measure? 

3. Were savings estimated separately for different participant groups? If yes, how 
were the different groups defined (by measures, by timing of participation, geo-
graphically, by characteristics known from the customer information system, 
etc.)? 

4. What was the timing of program participation for the estimated savings? 

 
B. COMPARISON GROUP 
With respect to the estimates of gross savings, the M&E Protocols do not require a 
comparison group. The rationale for its exclusion is provided on pages 2-4 to 2-6 of An 
Evaluation of Statistical and Engineering Models for Estimating Gross Energy Savings. 
Thus, the SCM as defined does not include a comparison group. However, some have 
recommended the use of a comparison group to help control for exogenous changes 
related to prices, political factors, technological changes, or any systematic bias in the 
weather normalization procedure. Of course, a comparison group is often required for 
estimating net savings. The questions below are relevant if one used a comparison group 
for estimating either gross or net savings.  

 

1. Was a comparison group used in the analysis? 

2. How was the comparison group defined? 
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3. How were pre- and post- periods defined for comparison group customers? 

4. Were any tests or comparisons made of the similarity between the participants 
and comparison group in the "pre" period? (yes/no) If yes, describe. 

5. Were any adjustments made for differences between participants and the 
comparison group? If yes, describe. 

 

C. SAMPLE AND SAMPLING 

1. How many participating (and how many comparison) customers were used to 
estimate the savings? 

2. Were these customers selected from the total pool of participating (nonpar-
ticipating) customers: 

- randomly 
- by census 
- by other means (explain)? 

3. What screens were used to eliminate customers from the analysis? 

4. How many participants (comparison cases) were eliminated as a result of each 
screen? 

5. Were any tests or comparisons made to examine whether the drawn sample was 
"representative" of the population of participants (comparison population)? 
(explain) 

6. Was a stratified sample used? (yes/no) If yes, how were strata defined and how 
was the allocation to strata determined? 

7. Was the sample weighted in the analysis? If yes, what was the basis for the 
weighting? 

 

D. WEATHER NORMALIZATION 

1. What weather normalization model was used? 

2. What time period defined the "normal" weather? 

3. What was the source of the weather data used for the analysis? 

4. What pre- and post-participation dates were included in the analysis? 

5. Are there potential seasonal biases related to the pre- and post- period dates? 
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6. Did the normalization adjust for heating degree-days only, cooling degree-days 
only, or both? 

7. On a customer-specific basis, how was the choice made between a heating-only, 
cooling-only, or heating-cooling normalization model? 

8. What degree-day base was used for heating and for cooling? If the base was 
customer-specific, how was the base selected? 

9. What accuracy measures are reported for the normalization model fits? 

 

E. DIAGNOSTICS AND ACCURACY 

1. Were the normalized savings examined for outliers? 

2. How were cases identified as outliers handled?  

3. Were any comparisons or tests made of the sensitivity of the results to inclusion 
or exclusion of outliers? If yes, describe. 

4. Is the standard error of the estimated savings reported?  

5. Is a confidence interval for the estimate reported? If yes, at what confidence 
level? 

6. Is there a discussion of potential biases in the analysis?  
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3 Quality Assurance Guidelines for Engineering Models6 
3.1 INTRODUCTION 
 
These quality assurance guidelines under the California Protocols are intended to 
establish a consistent basis for conducting engineering reviews of utility programs aimed 
at providing energy conservation in various sectors.  It is the purpose of this set of 
guidelines to develop and expand on the conditions under which engineering analysis 
including sampling guidelines, would be deemed to provide sufficient demonstration of 
the energy savings resulting from technologies installed under utility energy efficiency 
programs.   
 
Currently, the Protocols only allow for the use of simplified engineering models (e.g. 
algorithms) or more complex building simulation models (e.g. DOE2) for specific 
programs and end uses as the primary method for estimating gross impacts.  Table 1 
illustrates the Protocol tables, the DSM program, the end uses, and the allowable 
engineering techniques. 
 
While an engineering analysis which estimates gross impacts can be conducted on 
virtually any program for any utility, the Protocols focus on the more complex programs 
in which statistical billing analyses perform poorly; e.g. in cases where the number of 
participants is relatively low, the size of the sector is small, the expected savings are 
small, or the diversity of participation and/or applied measures is such that no consistent 
representation can be made.  For the most part, these problems arise in the analysis of 
industrial and commercial programs.   
 
In these cases, the review should be conducted on a case-by-case basis in which the 
engineering analysis applied to particular participants is reviewed or re-evaluated, and 
savings estimates are justified with respect to the observed billing records or to a detailed 
engineering review (based on the characteristics of the particular participant and applied 
measure).  In some programs, this would indicate a more rigorous sampling design, while in 
other programs additional resources to allow participants to be reviewed individually are 
required. 
 
 
 
 
 
 

                                                           
6 While the focus in this section is on the two energy simulation models most commonly used in 

California, DOE2 and Micropas, the issues addressed and the questions asked are also generally 
applicable to other models. Until a later study is conducted that addresses any possible issues that 
are unique to models other than DOE2 and Micropas, analysts should rely on the guidelines for 
engineering models contained in this report. 
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Table 1:  Engineering Technique Allowed in Protocols by Table, Program, and End 
Use. 

 
Table Program End Use Engineering 

Technique 
C-3A Residential Appliance 

Efficiency Incentives 
Program 

Lighting Simplified 
Engineering Model 

C-4 Commercial Energy 
Efficiency Incentives 
Program 

HVAC Building Simulation 
Model 

C-5 Industrial Energy Efficiency 
Incentives Program 

Indoor Lighting; 
Motors; Industrial 
Process 

Simplified 
Engineering Model 

C-6 Agricultural Energy 
Efficiency Incentives 
Program 

Pumping Simplified 
Engineering Model 

C-7 Residential New 
Construction 

Whole Building Building Simulation 
Model 

C-8 Nonresidential New 
Construction 

Whole Building Building Simulation 
Model 

C-9 Miscellaneous Efficiency 
Program Measures 

Miscellaneous Simplified 
Engineering Model 

C-12 Nonresidential Fuel 
Substitution 

Water Heating; 
HVAC; Process; 
Water Pumping 

Simplified 
Engineering Model; 
Building Simulation 
Model 

 
 
 

3.2 ENGINEERING REVIEW AND ANALYSIS 
 
Although engineering reviews are commonly used for many purposes, this set of 
guidelines will focus on the establishment of the relationship between claimed savings 
and verified or actual savings.  This relationship is inherent in the program design and 
evaluation protocols.  Thus, a sampling methodology which generalizes the relationship 
between utility calculations for claimed savings and actual savings could be developed 
that would minimize errors introduced by differing calculation methodologies used by 
individual utilities.  
 
Because of the relatively intensive analysis required for any one participant or any one 
program, the use of engineering analysis as an evaluation tool should be carefully 
allocated to those programs or problems that can be modeled with relatively limited 
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samples.  Where access or participant identification is problematic, engineering analysis 
often is either difficult or impossible to apply. 

 
An engineering review is intended to establish the determinants of consumption in the 
context of the installed equipment at the participant level.  The engineering algorithms 
used to determine the equipment sizes and schedules in the design process are applied to 
the evaluation process.  Usually, some adaptation is required; however, standard software 
tools are available for the more complex engineering problems. 
 
The engineering analysis seeks to determine the following: 
 

• What are the determinants of consumption in this particular process or building? 
• How can we understand (and quantify) these determinants? 
• How does the equipment installed by the conservation program impact total 

consumption by changing these determinants? 
 
For the evaluation of energy savings of conservation programs, this analysis focuses on 
the change in energy use from a well-defined base case.  The engineering analysis is used 
to compare the predicted energy savings from utility and manufacturing representatives, 
installers, or other parties with the observed conditions at the site or with detailed 
information collected by account representatives or other utility personnel as part of the 
program implementation.  This process ferrets out the errors in original savings 
calculations, as well as the bias and approximations that must be made during the 
planning process. 
 

3.2.1 Data Collection 

The data collection methodology must be designed carefully to characterize all of the 
components needed to determine consumption related to a particular end use.  The 
principal goal is to describe the level of savings achieved by the measures installed 
versus either the pre-installation conditions or some standardized set of components that 
would have been installed in the absence of the utility program.  In either case, an 
engineering review would focus on the determinants of consumption for that particular 
end use and the resulting impact of the installed versus the base case.  For comparison 
purposes, the same algorithm would be used in both cases and the output from the 
analysis would be the change in modeled consumption between the two conditions.  
 
The information collected should focus on the measures or actions taken due to the utility 
program and the base case information needed for the savings calculation.  This should 
include occupancy information, changes in occupancy conditions, and a detailed 
engineering description of the conditions effected by the utility program.  In the industrial 
sector, for example, a detailed audit and review of the processes of each building is 
usually essential.  This should include:  
 

1. The output of the particular production line;  
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2. The overall productivity of the plant;  
3. Changes due to efficiency improvements. 

 
For most building-based conservation programs, information about building components, 
number of occupants and hours of occupancy, and mechanical equipment must be 
established.  This is particularly important in developing energy simulations.  Other 
equipment that interacts with the HVAC system (such as lighting, building service water, 
office machinery, and other components) must also be described in some detail.  The 
result of combining all of this information is a detailed audit, which is aimed at 
establishing the determinants of energy consumption and the necessary inputs to produce 
a valid engineering analysis.  
 
Utility files can often be the only source of base case information.  Unfortunately, many 
utility files are either incomplete or inadequate.  In general, careful review of these files 
is important to establish the information needs of the engineering review. 
 
There is a tendency, during data collection and engineering analysis, to use proprietary 
software which is difficult to review in its general form or as it relates to a particular 
building or engineering problem.  While there are times when this is acceptable (such as 
when evaluating particular components in the industrial sectors) it is generally a poor 
idea to base an evaluation or a savings claim on software which is inherently difficult to 
review.  It is not very helpful when the computer code is published, but summary 
information explaining the techniques used is important to establish the credibility of 
such techniques. 
 
The remainder of this section focuses on different aspects of, and techniques used in, engineering 
analysis of these conservation programs. 
 

3.2.2 Base Case 

Regardless of the evaluation technique, one of the most important tasks for the evaluators 
of each project site is the establishment and documentation of the base case.  Depending 
on the measure and program, the base case is either the situation as it existed prior to the 
installation of the energy conservation measure, or some estimation of what would have 
been installed in the absence of the conservation program.  Load impacts are derived 
from the difference between the energy use following installation of the utility-sponsored 
measures and the energy use under the base case. 
 
In most retrofit programs, the connected load, efficiency, and hours of operation of the 
existing equipment which is to be replaced or upgraded are required to determine the 
base case.  This establishes the amount of energy needed to accomplish a certain task 
originally, which is then compared to the energy needed to accomplish the same task 
after the measures are installed.  
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There are two basic retrofit conditions. The first involves situations in which there are no 
efficiency standards for the installed equipment. This requires that the initial utility 
estimate of savings made during the implementation of the program be based on 
information gathered  and documented prior to the installation of the conservation 
measures, such as nameplate ratings and hours of operation of the equipment which is 
being replaced.  In more complex situations, one-time or short-term metering may have 
been conducted by the utility. It is not usually sufficient to rely on the memory of 
operations staff for these initial estimates as this may be biased by expectations of greatly 
improved performance.  Without documentation of the prior condition, it is often not 
possible to justify energy savings calculations. This requirement does not apply to those 
DSM programs for which there are so-called deemed baseline values that have been 
agreed to by the utility and the CPUC. The second involves situations in which there are 
efficiency standards for the installed equipment. In such situations, the usage associated 
with the efficiency standard may serve as an acceptable base case. 
 
Of course, in either of the two conditions described above, one may wish to investigate 
partial freeridership. In such cases, an alternative base case could be established using 
information provided by the operations staff.  
 
In the case of new construction, a comparison of the installed measure must be made to 
an estimated base case comprised of what would have been installed in the absence of the 
program.  The definition of the base case can be based on plans drawn up before the 
involvement of the program or the average efficiency of equipment recently installed 
outside the program at the participating site. Another approach can base the base case on 
an industry recognized “standard practice” for that particular end use.  A definition for 
“standard practice” for a particular end use can be developed from code regulations or the 
average efficiency of equipment being installed in similar buildings in other locations.   
 
Any such base case is clearly difficult to establish since it is theoretical in nature.  In 
these cases, the burden is on the utility to develop a base case that can be justified.  
Without a believable base case which is less efficient than the installed measures, it is not 
possible to claim that any energy savings have been achieved. 
 
In the industrial sector, where equipment is tied to productivity or output, the impact of a 
modified production process could result in an increase in output.  The base case for the 
savings calculation is more complex in these cases and is discussed in detail in Section 4. 
 
As with the other energy use calculations, the base case should be calculated in as 
straightforward a manner as possible and in a manner that parallels the methods used for 
the incented or as-built cases. 
 
If there are no significant interactions with other energy uses, then a simple engineering 
calculation should be sufficient to establish the base case.  If interactions are present, 
then a simulation will be required.  The same simulation must be used for the base case 
and the new condition, containing all of the same assumptions (unless it can be 
demonstrated that the utility program had a direct effect on those assumptions). 



 25

 

3.2.3 Simple non-interactive measures 

Many conservation measures involve changes in the connected load or hours of operation 
of an end use, which has little or no interaction with other energy uses in the building.  In 
these cases, a simple engineering model can be employed to calculate the impact on total 
energy demand and total consumption related to the changes made.  There is no reason to 
use a complex simulation model, since the energy impacts can be more precisely 
described by simpler engineering algorithms.  This analysis method is most often seen in 
lighting measures, where there is an absolute watt reduction as a result of changing 
equipment.  In such cases, review of nameplate capacities can be sufficient to establish 
the impact of the measure.  There are other situations, however, when before- and after-
retrofit metering must be applied to determine the absolute load and the change in 
consumption. 
 
In the most straightforward situation, the principal impact of the conservation measure is 
to reduce the connected load associated with a particular end use.  For example, when 
exterior lighting measures are applied to fixtures lacking lighting control or scheduling, 
the energy saved is calculated using simply the difference between the initial wattage and 
the final wattage after the installation of the measure.  This figure is multiplied by a 
presumed or measured duty cycle, based either on a priori hours of operation or metered 
or monitored schedules.  In this example, no changes in energy use in any other building 
component or operation could be expected.  Therefore, a simple fixture audit would 
provide the information required to calculate total savings.  Similarly, in agricultural 
pumping, the connected load impact of a single-speed motor used in a pumping 
application can account for virtually all energy savings.  However, given the wide 
variation in duty cycles over the course of a given season, assumptions or data must be 
collected to demonstrate savings based either on actual observed duty cycles in the 
program year or some normalized duty cycle averaged over several crop years. 
 
In general the primary source for the base case and other determinants of consumption 
are files generated by the utility documenting the characteristics and initial conditions of 
the participant.  If these files are properly constructed, this simplified engineering 
analysis can be limited to verification of the assumptions and engineering contained in 
the files.  It is difficult to imagine that this would ever be simply a file review.  In 
virtually all cases a field review of some sort would be required to verify the engineering 
basis of the savings estimates.  The resulting file would then be a combination of the 
evaluator’s review of the particular customer and the program summary of the utility’s 
calculations used in developing the savings estimates for the individual customer. 
 

3.2.4 Simulations of Load Interactions 

The use of engineering simulations has been a major component of engineering analysis 
in California programs.  This is a situation that should be approached with some caution.  
Many conservation measures will have an impact on more than one energy use 
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component in the building (for example, where an interaction between the energy use of 
cooling equipment and the reduced internal heat resulting from lighting conservation in a 
commercial building).  A typical methodology for evaluation is to generate a simulation 
of this interaction so that the net savings associated with particular interactive measures 
can be established. 
 
When developing such simulations, it is not only important to obtain accurate 
information about individual pieces of equipment, but also to obtain a complete view of 
that particular system’s design and operation.  The inputs from occupancy characteristics 
(such as hours of occupancy, number of occupants, and process loads) can have a larger 
effect on the total HVAC use than the components that are affected by the energy 
conservation measure. 
 
Simulation strategies usually solve this through the use of a calibration to overall energy 
bills.  This calibration can be quite complicated, particularly if the initial data collected 
about occupancy and other issues is incomplete or inaccurate.  Often, this calibration step 
requires more effort than the initial set up of the simulation.  Furthermore, simulations 
often have a relatively limited usefulness. If the energy conservation measure is aimed at 
a domestic hot water system, for example, the utility of a detailed simulation of the entire 
building is negligible.  For typical buildings, this type of simulation is most useful to 
analyze interactions between HVAC systems and other building loads. 
 
3.2.4.1 Non-Residential Buildings 
 
For non-residential building simulations, DOE2 is considered a standard.  It provides a 
fairly straightforward engineering simulation that attempts to simulate climate, building 
equipment, and building shell, and the interactions among these components.  It is not the 
only energy simulation tool available, nor is it always the most applicable to particular 
conditions.  The DOE2 program is well developed around a fairly approximate building 
load in algorithm with a very detailed equipment simulation package, which can account 
for many of the operating characteristics of heating, cooling and ventilating equipment.  
The simulation requires many hundreds of inputs which must be generated from audits or 
engineering reviews.  Assumptions or default parameters are used for variables that 
cannot be developed in this way.  The particular combination of these assumptions will 
have a significant impact on the absolute size of the energy prediction from the 
simulation.  The default assumptions can have a greater impact on energy use predictions 
than the audit results and should be documented as carefully as the engineering inputs 
derived from the analysis. 
 
The DOE2 program is part of an entire class of simulations (e.g., TRACE, TRANSYS, 
HAP, etc.), each with its own strengths and weaknesses for particular analysis 
applications.  DOE2, for example, has a fairly cursory treatment of the building shell and 
allows relatively little direct evaluation of complex building shell improvements such as 
may be found in the residential sector.  DOE2 typically uses approximations for 
interactions between various heat loss components such as ground connections and has a 
relatively approximate treatment of solar interactions with the building load.   
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For most non-residential buildings, this simplification is quite acceptable.  By far the 
most significant energy use factor in these buildings will be the result of internal 
activities and/or equipment efficiencies and configurations in the building itself.  
Carefully and correctly describing these factors is the most significant factor in 
understanding the energy use of the building.  While the DOE2 program has limitations 
in this area, it is designed directly around this problem and is among the most likely 
simulation tools to establish the relationships between building loads, climate and 
equipment.   
 
3.2.4.2 Residential Buildings 

In the residential sector, where energy use is largely determined by climate conditions 
and building shell characteristics, the DOE2 simulation is often too approximate.  The 
importance of equipment efficiency in residences is often secondary to occupant behavior 
(such as thermostat setpoint), local microclimate variation, and building heat loss rate or 
solar heat gain through windows and other surfaces.  Depending on the nature of the 
question, simulations aimed at the residential sector can often be simplified substantially.  
There are numerous simulations in California which are meant to solve this problem 
(such as CALPAS, CALRES, and MicroPAS) as well as simulations distributed 
nationally which are similarly constructed around the development of a careful 
understanding of building loads caused by climate.  Generally, one of these alternatives 
should be preferred to DOE2 for use in the residential sector or when the measure is 
significantly impacted by climate or envelope considerations. 
 
3.2.4.3 Bin Method Analysis 

There are also numerous simplified simulation programs based on the bin method that 
can be used for any construction type.  The bin method actually summarizes the climate 
of a particular place based on the probability of particular temperatures, and analyzes the 
building based on its performance within normal temperature ranges for a particular site.  
This is often a very convenient method, since most heating and cooling equipment is 
rated, and manufacturing specifications are evaluated using this approximation method.  
Part load curves are typically expressed as equipment behavior within temperature bin 
widths of about 5°F.  Thus, a program that establishes consumption within these 
temperature bins can be easily adapted to equipment part load curves of this sort. 
 
The advantage of these programs is that they require substantially fewer assumptions; 
however bin simulations are also less accurate and should not be used if a significant 
amount of detailed information is available. Bin programs are designed around 
simulating building load and the interactions between building load and building 
equipment.  Occupancy schedules, lighting schedules, lighting loads, process loads, 
domestic hot water loads, and other loads not directly related to the climate or equipment 
performance are inputs into the simulation.  These can be measured directly, via the 
connected load evaluation, or can be assumed from general observation of particular 
building types.  Where the analysis is focused on equipment performance with relatively 
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little occupant-introduced complexity (e.g., warehouses, small retail buildings, etc.), the 
bin method might be acceptable. 
 

3.2.5 Model Calibration 

Quite often, individual simulation programs (especially proprietary programs that 
develop inputs from audits or short term data collection) are based on a long list of 
assumptions.  These assumptions are often based on long term experience or on detailed 
metering performed on unrelated buildings.  It is important to realize that no matter how 
much detailed data is collected, a complex simulation such as DOE2 will require several 
thousand assumptions, and even the more simple models require several hundred.  The 
characteristics associated with these assumptions can often be as important in 
determining the results of the simulation as the detailed review of the equipment or 
building shell itself. 
 
It is for this reason that the calibration of model outputs to the observed bills for a 
particular building can be very misleading.  The simulator utilizes numerous assumptions 
which can have major impacts on building energy use, but which cannot be directly 
known from audits or other direct short-term observations.  Such things as ventilation 
rates, incidental infiltration rates, thermostat setpoints by individual occupants, etc. can 
all be adjusted to achieve a match to an arbitrary billing standard.  It may well be that 
these are not the assumptions that lead to the correct building specification.  Other errors 
may also be found elsewhere in the simulation’s description of equipment configuration, 
building shell configuration, or interactions between distribution systems and equipment.   
 
The standard reference material on the proper simulation of buildings and building 
processes is quite limited.  Experienced modelers are important; however, documenting 
the general simulation procedure in detail is also important so that reviewers can assess 
the combination of assumptions that have been used.  Once the crucial assumptions 
necessary to describe the measure and its interaction with the building or process have 
been derived, the details of the exact match to the billing calibration are secondary.  
Usually demonstrating that such a match can be made is all that is required.  Even then, 
the function of this step is largely to establish the veracity of the simulator, not the 
simulation. 
 
It is therefore necessary that the assumptions used in the simulation are clearly accessible 
to the evaluator.  Some complex simulation programs are such that a huge number of 
simulations are done inside a complicated batch file arrangement.  These can be arranged 
in such a way that the individual critical assumptions effecting energy use are effectively 
hidden from the reviewers.  It can be quite cumbersome to open individual input files and 
search for the assumptions that were made.  The evaluator should provide hard copies of 
all input parameters used to model each structure (e.g., a print of the BDL files for 
simulations using DOE-2). Finally, there should not be a large amount of adjustments 
made to standard assumptions for individual building files to match them to bills without 
explicit documentation of those adjustments. 
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The calibration step involves the evaluation of bills.  As with any billing analysis 
(Section 3), the analyst should be careful to calibrate the model with billing results that 
are as free of error and complete as possible.  Because of variation in weather and meter 
cycles, it is very desirable to calibrate simulations with bills covering an entire year.  
Shorter periods can be used if there are no alternatives but careful comparisons using 
explicit weather and occupancy data are necessary to assert that the calibration is 
meaningful. 

 
 

3.3 Billing Analysis 
 
While billing or regression analysis techniques are often used as an alternative to a 
detailed engineering approach, they can also be important in supplementing or calibrating 
the engineering evaluation.  These tools can be effective when used with care to inform a 
more detailed engineering analysis.  

3.3.1 Conditional Demand Analysis or Statistically-Adjusted Engineering Estimation 

Conditional Demand Analysis (CDA), or Statistically-Adjusted Engineering (SAE) 
Estimation are statistical approaches that involve the use of multiple regression with 
binary “dummy” variables or variables providing engineering estimates of energy use.  
The model typically employs energy use as the dependent variable and a variety of other 
variables hypothesized to affect energy use (including the installation of the conservation 
measure) as the independent variables. 
 
Such an approach asserts that energy savings can be due to a variety of factors, including 
more efficient equipment or changes in consumer behaviors. If a building is unchanged, 
but the occupant sets the cooling setpoint five degrees higher than during the previous 
cooling season, energy savings are realized.  As a corollary, the assumption is that 
consumer use patterns can sometimes negate the benefits of increased efficiency in 
building technologies.  To understand the amount of energy conservation achieved, one 
need only extract a large enough representative sample of the population and test to see 
whether less energy is used by this group after controlling for the usual exogenous 
variables (such as other changes in the building that may affect energy use, climate, 
economic activity, etc.). 
 
The problem with CDA, using binary dummy variables, is that it often requires a very 
large data set.  To be statistically valid, the model requires at least as many degrees of 
freedom as there are variables in the regression.  This is true even in the case of 
regression models in which a preliminary regression is used to estimate an intermediate 
variable.  This variable is then used as an input to the final regression.  When this is done, 
there must be at least as many degrees of freedom in the data set as all of the variables 
used in both the preliminary and final regression models.  
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3.3.2 Load Shape Analysis 

This technique uses individual bills in combination with a detailed engineering 
description of a specific building to evaluate overall energy conservation effects.  This 
differs from typical regression analysis in that the actual billing analysis is conducted on 
a case-by-case basis, using the bills and other information about the building to 
disaggregate consumption and provide estimates of particular components of the energy 
bill.  A typical example of this technique is the PRISM degree day program used in the 
residential sector to disaggregate utility bills into their major components using a 
regression technique.   
 
These programs can be quite useful; however, they have severe limitations concerning 
the need for good billing data and relatively consistent energy use over a period of 
approximately one year.  This works well in the residential sector and can be useful in the 
industrial sector in cases where plant output and operation remain unchanged.  However, 
in the non-residential sector, billing analysis is useful to calibrate other engineering 
analyses in cases where simulations or other detailed analysis can be informed by total 
energy use estimates.  In some situations where detailed energy usage information is 
available for loads, the need to disaggregate end uses is minimal (such as a review of gas 
bills where only space heating is present). 
 
The load shape analysis can proceed with a regression or other statistical approach to 
understand the relationship between climate variables or audit variables and monthly 
energy use from bills.  Quite often, the billing analysis is the only real basis for 
establishing whether complex engineering approaches are adequate for the particular 
building or process.  In this event, the billing analysis is just one step, which must be 
supplemented by additional engineering analysis to explain the findings or to establish 
the veracity of the engineering analysis compared to actual consumption. 

3.3.3 Data Collection 

For any billing analysis methodology, the data collection process is straightforward.  
However, there are several pitfalls, which should be highlighted: 
 

1. The relationship between the collected bills and the process or building to be 
reviewed must be understood.  It is not unusual for there to be substantial errors in 
both assigning bills to particular customers or end uses, and in readings or billing 
estimates that are part of the billing record.  For the utility, bills are an accounting 
record used to invoice individual customers.  The accuracy of particular meter 
readings is not vital to this use, as long as the errors can be corrected in a 
subsequent billing.  Thus, if a particular bill is estimated because of some internal 
billing process, it can be easily corrected upon the next actual reading.  For a 
multivariate billing analysis used to develop climate parameters, however, this 
can be extremely difficult to interpret.  The analyst must carefully survey the 
billing record to ensure that this relationship is as error-free as possible.  This is a 
tedious but straightforward process, since quite often these bills show back-to-
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back deviations, with one being substantially higher than expected followed by 
one substantially lower than expected (or vice-versa).  Correcting for these 
involves the use of either a “smoothing” algorithm (if sufficient data is available) 
or graphical processes in which the judgment of the analyst is relied upon to 
smooth the bills over a period of erratic records. 
 

2. Missing bills are another common problem.  Often, the size of the billing record is 
insufficient at the beginning of a building’s operation.  Depending on the nature 
of the analysis used and measures to be reviewed, this could be a serious problem 
that would result in the individual case being excluded from further analysis.  The 
period for which billing records are available might be sufficient to establish the 
level of consumption.  It is important to realize that either of these outcomes can 
be found, but if a billing analysis depends on annual or seasonal variation, this 
variation should be observable in the billing record if it is to be used as part of a 
billing analysis.  For example, space heating and cooling loads in the residential 
sector demand a fairly complete one year billing record in order to track seasonal 
variations and estimate heating and/or cooling effects.  It is often difficult or 
impossible to develop calibrations for particular end uses from billing records for 
this reason.   

 
3. Important end uses (such as space conditioning or domestic hot water in 

residential construction, or dominant process loads in industrial applications) can 
use disaggregations of the bills as the basis for calibrating particular engineering 
models.  For the most part, however, the bills are much coarser than is required 
for this purpose. They can be indicative of the accuracy of other methods but are 
not likely to be useful without additional information about the billing 
components or process.  The record of production in an industrial process could 
explain some or all of the variations in the billing analysis and help normalize the 
billing record to a relevant production level in an industrial plant.   

 
4. In calibrating the engineering analysis using billing analysis, it is particularly 

helpful to remember that occupancy changes are likely to contaminate the 
analysis and need to be accounted for directly.  Since the sampling is based on an 
efficient sample of a savings or consumption variable, it is unlikely that errors due 
to occupancy changes in the residential or commercial sector can be assumed to 
be random and unbiased.  Thus, a direct accounting of these changes should be 
attempted.  In some sectors, especially where the meter is attached to a single end 
use (such as an agricultural pumping station), the bills can be used as a direct 
measure of savings as long as the efforts to normalize consumption across the 
base case and program year periods are made. 

 

3.4 Deferred Savings (Production Increments) 
 
A special situation exists for calculating an accurate base case when the utility program 
involves production equipment that may exist primarily in industrial facilities but also in 
commercial facilities such restaurants and stores. In the industrial and commercial 
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sectors, energy conservation programs often target production processes such as plastic 
extrusion and cooking.  In the most straightforward cases, the program affects only the 
efficiency of production, so the energy savings are simply the amount of energy which 
was originally required to produce the product minus the energy required to produce the 
same amount of product at the new efficiency level.  However, often the project will 
affect not only the efficiency of production, but the rate of production as well, allowing 
the same plant to produce more product than before the installation.  In the most extreme 
cases, the installation of new production equipment enables the customer to increase 
production so much that it actually uses more energy than before the installation of the 
energy conservation measure (this can be true even if the efficiency of production per 
unit of product is significantly improved).  At the same time, there are external market 
fluctuations which may cause a plant to produce more product in a given year, causing an 
increase in production after the installation of new equipment which was not related to 
the conservation program at all. 
 
It is not the intent of the protocols to support increase in production or facility 
modernization for its own sake.  A clear increase in production efficiency for the present 
increment of production must be demonstrated.  If the production is increased or new 
production capacity is added then the standards for inclusion in the shared savings 
incentives programs must increase.  There are two general classes of these “production 
increments” or “deferred savings” that must be considered: 
 

3.4.1 New production line or new facility 

Some measures are implemented in entirely new customer facilities or as part of an 
addition to a customer’s facility, e.g., a new building containing entirely new 
manufacturing equipment.  In this case, there is no pre-installation output level.  The 
evaluation must use the observed output level in the post-installation period. Note that 
the procedures described above for determining the appropriate baseline for energy and 
demand as well as calculating the kWh and kW impacts also apply to the new-facility 
circumstance.   

While the baseline requirements for the new facility parallel the NRNC protocols, new 
industrial or commercial production should be filed under the Energy Efficiency 
Incentives for the industrial (IEEI) or commercial (CEEI) sectors.  In these cases 
however the utility or the customer should submit a case from which savings are 
calculated.  This should include vendors, technologies and performance information so 
that an engineering evaluation of the base case can be undertaken in reviewing the new 
facility claims. 

3.4.2 Improvements in existing production lines, proving the rebates did not cause the 
increase in production 

The default assumption for the remaining rebate measures will be that they caused the 
change in post-installation output.  Two forms of evidence will constitute sufficient proof 
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that this assumption is wrong.  These two forms of evidence are as follows: 

1.  Customer Testimonial in Application File. The utility may place in the 
customer’s file a letter, on customer letterhead, dated prior to the date of 
installation or the date of the application for the incentive (whichever is earlier), 
which states that the customer had planned to change the plant’s output.  Many 
customers consider their future output levels to be highly confidential, so it is not 
necessary that the output level be quantified. If a letter is present in the file, it 
takes precedence over any other data gathered in the post-period evaluation. 

2.  Decision-Maker Interview in Post-Installation Period. If no letter is present, a 
second form of proof may be sought during the evaluation.  An interview may be 
conducted with a member of the customer’s staff who is responsible for planning 
the output level of the measure-affected systems.  The interview will consist of a 
battery of questions aimed at estimating the probability that output would have 
reached the same level in the post-period in the absence of the rebate measure.  A 
high probability will constitute proof that the measure did not cause the change in 
output level.  

If a utility chooses not to collect either of these two forms of evidence, the utility must 
assume that the rebate measure caused the increase in the post-installation output level. 

3.4.3 Adjusting for Changes in Output in Gross Savings Estimates 

Engineering estimates of savings require estimates of energy use for measure-affected 
systems under two conditions.  The first is the baseline condition, which may be 
represented by the pre-installation performance characteristics of the affected equipment 
or in the case of new facilities by an assessment of a current practice standard. In cases 
where the increased production is the result of the efficiency improvement then at a 
minimum the new increment of production must be compared to a baseline that 
represents the current practice for new production in the industry.  Thus, a separate 
estimate is also required for the post-installation conditions. Using these two pieces of 
information, savings are calculated as baseline consumption minus post-installation 
consumption.  One major variable in this calculation is the output level of the affected 
system.  

The treatment of output level in the calculation must reflect the determination of whether 
the measure caused the post-installation change in output level.  There are two possible 
cases.   

1. If the measure caused the change in output, gross savings are defined to be: 

(Consumption of the affected systems in the post-installation conditions, assuming 
that systems were operated to achieve the pre-installation output level) minus 
(consumption that would have occurred if the unimproved system had been used to 
achieve the pre-installation output level). 

2.  If the measure did not cause the change, gross savings are defined to be: 
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(Consumption of the affected systems in the post-installation conditions at the 
observed post-installation output level) minus (consumption that would have 
occurred if the unimproved system had been used to achieve the post-installation 
output level). 

 

3.5 SAMPLING 
 
As they are currently written, the Protocols emphasize the need for fairly large and 
extensive samples to overcome the difficulties introduced by diverse building populations 
and use patterns.  The guidelines presented, while they pre-judge the results of random 
sampling, suggest that the authors of the Protocols are interested in a simple random 
sample that is large enough to smooth out the variances within the sample itself.  
 
Given an optimum stratification and sample design, the size of the final sample required 
could be reduced dramatically.  However, if the principal goal of the evaluation is to fit a 
regression model with a large number of parameters, then the sample size still needs to be 
quite large.  The marginal cost of those sample sizes is not great, since the evaluation 
depends on the collection, cleaning and use of utility bills with relatively cursory 
secondary information which is easily gathered from telephone surveys or similar data-
gathering efforts. 
 
If an engineering evaluation is to be conducted, then the marginal cost of gathering 
information on individual customers becomes much higher.  In this event, the need for 
well-designed samples, which are stratified to accommodate both the range of 
consumption and the end use activities, is essential.  Careful engineering analysis 
demands much greater resources per site than simple billing analysis.  The use of focused 
and well-designed sampling plans makes it feasible to use engineering analysis as the 
basis for evaluating even very large programs.   
 
A more detailed discussion of sampling methods is presented in Attachment 1. 
 

3.5.1 Stratified sampling 

A powerful, yet fairly simple, method of using auxiliary information is to construct a 
stratified sample.  A good stratified sampling plan can reduce the sampling requirements 
for a given program by a factor of ten when compared to a simple random sampling. That 
is, if you chose your sites by simple random sampling, like beans from a jar, you would 
need to evaluate four to five hundred sites for the same level of precision that forty or 
fifty sites chosen through a stratified sampling plan would deliver. 
 
Careful development of a stratified sample can avoid its inherent pitfalls.  In general, it is 
best if the stratification criteria are derived directly from the measurement most desired: 
claimed kWh savings, for example.  Stratifications that are unrelated to the target 
variable can actually decrease the precision of estimates relative to simple random 
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sampling.  This implies that if you wish to verify claimed kWh savings, you should avoid 
stratifying on geographical region or equipment type and stratify solely on claimed 
savings.   
 
Of course, it is tempting to stratify on equipment type as well as on claimed savings, so 
as to derive verification ratios or realization rates for different equipment types; but it 
must be appreciated how expensive this practice can be in terms of the precision of the 
overall estimate.  An unfocused stratification plan can fail in its principal objective - 
verifying program claimed savings.  Verification ratios for specific equipment classes can 
still be estimated given that these equipment classes do not enter into stratification 
criteria; but they are in the nature of ‘bonus’ information; the overriding objective is not 
compromised to aid in their estimation. 
 
A different sort of pitfall is created by sampling plans that arbitrarily exclude entire 
classes of sites from the sample.  Typical subjects of such exclusion would be sites which 
are small in some sense or hard or inconvenient to evaluate.  The problem with such a 
priori exclusions is that the resulting program estimates are generally biased.  It is only 
common sense that the collective claimed savings accounted for by the smallest 
consumers can not be verified if those customers are excluded from the sample.  The 
intuition behind such arbitrary exclusions is, of course, that the verifiers wish to 
concentrate their efforts on more “important” sites.  However, a properly constructed 
sampling plan typically samples only a few of the smallest sites, implying, in effect, that 
each sampled “little” site is standing in for a great many other unsampled little sites and 
is hence as important in the overall estimation as "big" sites sampled at much higher 
rates.  The low sampling rates for little sites imply that a sampling plan free of arbitrary 
exclusions (and resulting biases) entails little or no extra effort. 
 
The Dalenius-Hodges formulae, for example, constitute a method for determining 
optimal stratification boundaries and sample sizes within each stratum.  Optimal in this 
context means finding the way to achieve a needed precision level with the fewest sample 
points, or, if the cost of assessing different kinds of sites differs, at the lowest weighted 
cost. 
 
An unexpected pitfall with optimal stratification schemes is pushing them too hard.  A 
finely calibrated sampling plan with many savings-based strata and minimal sample sizes 
within each stratum is more vulnerable to problems such as data contamination and non-
response than a simpler sampling plan with fewer strata.  The optimizing formulae work 
on the assumption that the true variability of savings within each stratum is known; in 
fact we assume that variability of claimed savings is a good proxy; if it is not, our 
sophisticated sampling plan can perform badly.  In practice, a maximum of six strata is 
probably enough for program evaluation, even if the formulae suggest that we could 
reduce needed sample sizes further with ten or twelve strata. 
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3.5.2 Model-assisted sampling 

Classic stratified sampling uses available auxiliary information in the sample design 
phase, to determine stratification boundaries.  Model-assisted sampling, a later 
development, uses auxiliary information both in designing a sample and in calculation of 
subsequent estimates.  The fuller use of auxiliary information means that model-assisted 
sampling can potentially outperform classic stratified sampling.  The cost of these 
potential benefits is the making of more assumptions and greater complexity of 
estimation.  If our assumptions turn out to have been far from the truth, the resultant 
estimates, while still statistically valid, can have low precision.  The assumptions that set 
model-assisted sampling apart from classic stratified sampling are that there exists a 
regression relationship between the variable of interest (verified per-site savings, say) 
and known auxiliary variables (claimed per site savings) which explains a high 
proportion of the variability across sites in the target variable. 
 
As with classic Dalenius-Hodges stratified sampling, auxiliary information is also used in 
the sample design phase.  An optimal sample plan sets the likelihood of selecting a given 
site proportional to the standard deviation of its regression error.  In practice, it is quite 
difficult to come up with a plan for drawing a sample of fixed size without replacement, 
which satisfies the above criterion.  One response to this quandary is to accept a random 
sample size; another response is to reintroduce stratified sampling. 
 
A straightforward near-optimal stratified sample can be designed, in which selection 
probability is nearly proportional to regression error standard deviation.  The 
stratification variable is not the magnitude of claimed savings at a given site, as in the 
classic stratified sample case discussed above, but rather the assumed relative standard 
deviation of the regression error at that site.  It turns out also that the preferred scheme 
for determining stratum boundaries does not follow the classic Dalenius-Hodges 
criterion, although, as with Dalenius-Hodges it is optimal once these boundaries are set to 
sample equal, or nearly equal numbers of sites from each constructed stratum. As with 
classic stratified sampling, with the above scheme it is costly to use unrelated variables as 
additional stratification criteria. 
 
The principal use of a model-assisted methodology is to provide a method for expanding 
information gathered on a small sample to a larger sample that has been designed to meet 
the sampling criteria.  The advantage of this type of sampling is that it provides a basis 
for subdividing the sample for purposes of performing complex and expensive analysis 
on a sub-set of the sample.  This has usually been either sub-metering of particular 
buildings for purposes of gathering inputs to an engineering analysis such as light 
schedules or cooling loads.  This technique has been applied as a “double ratio analysis” 
in some evaluations, but has been largely misapplied (if widely accepted) in engineering 
analysis conducted in the non-residential sectors.   
 
The second area where this technique has been employed (with considerably less effect) 
is in the use of elaborate simulation calibration exercises that single out a few buildings 
for detailed simulation with feedback from utility billings.  This process usually allows 
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the modeling contractor to demonstrate prowess with the simulation tool but little else is 
accomplished.  Relatively rarely is this double sample applied correctly so that the 
variance calculations (thus the significance tests and confidence intervals) are modified 
to recognize that the stage-wise model input has the effect of changing (increasing) the 
variance of the estimate. 
 

3.6 Guidelines Summary 
 
The following elements are required to accurately measure and defend savings estimates 
for installed conservation measures. 
 
1. Data necessary to establish the base case energy use of existing equipment that is to 

be replaced or modified must be clearly documented before the installation of the new 
equipment.  In some cases, it may be possible to reconstruct the base case from 
company files, but the memory of operations staff cannot be relied upon for schedules 
or energy use.  As a result, the utility should insure that the base case is carefully 
documented for any program that is to be evaluated with an engineering review. 

 
2. For purposes of calculating load impacts, simulation of base case must use the same 

simulation program and the same assumptions that are used to simulate the energy 
use of the new condition.  Assumptions may only be altered for the new conditions if 
it can be clearly demonstrated that the program had a direct effect on that aspect of 
the energy use. 

 
3. The burden is on the utility to prove that any increase in production of an industrial 

process site was due to factors unrelated to the program if savings are to be calculated 
on production increments.  Furthermore, they must establish a new equipment base 
case for that particular industry if new production is added as a part of the project. 

 
4. Simple engineering algorithms can only be used to calculate load impacts when there 

are no important load interactions between the installed measures and other energy- 
using processes in the building. 

 
5. Simulations should be used when there are significant interactions between the 

conservation measure implemented and other energy uses in the building. 
 
6. The simulation tool should be well matched to the building type or end use.  DOE2 

should only be used for commercial buildings with complex interactions of space 
conditioning equipment with other loads.  Other simulation programs are acceptable, 
but the analyst is required to document the applicability of the simulation to the sector 
and analysis conducted.  Bin methods or simpler hourly simulations should be used 
for the residential sector or for other cases dominated by climate and building shell 
interactions. 
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7. Standard assumptions affecting energy use that are used in the simulations must be 
clearly stated and not buried in individual building files.  Any variations from these 
standard assumptions for individual buildings must be documented and justified.   

 
8. Automated input and setup routines used in the development of load estimates for 

particular applications must be documented, including the default parameter settings 
used by the analyst or assumed by the standardized set-up routines. 

 
9. An industrial process application must show that an increase in production between 

the base case and the improved case is traceable to market conditions and not to 
production improvements brought on by the incentive measures.  If this case is not 
made, then load impacts shall be calculated using the production prior to the 
installation of the measures. 

 
10. The production efficiency base case shall be developed from current practice in the 

industry, not from the previous conditions in the production facility. 
 
11. Stratified sampling is encouraged in conducting engineering analysis.  Samples 

should meet the confidence intervals and significance requirements of the protocols.  
To achieve this, somewhat more rigorous criteria should be employed in the sample 
design.  Generally, a six level stratification would be considered the maximum 
number of strata for a simple stratified random sample.  Model assisted samples may 
employ more strata (particularly in two-way sampling). 
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Introduction 

Conceptually, it is useful to think of two separate components to any sampling exercise: the 
sample design and the plan of subsequent analysis adopted.  The sample design and the 
analysis plan are interdependent, because the choice of analytical approach will imply a 
preferred sample design, but independent in that a chosen analytical approach can be applied 
to a wide variety of sample designs.  Sample design is defined as a plan for picking a sample 
from a population.  More abstractly, a sample design implies the assignment of a selection 
probability to every subset of a population.  

Consider a simple example -- the drawing of 10 separate sites at random from a program 
population of 100.  This sample design assigns a selection probability of zero to every subset 
of the 100 which does not contain 10 elements; and assigns an equal (and very small) 
selection probability to every 10-member subset of the 100.  A sample design implies a 
selection probability for every individual element (site) in the population; but such individual 
selection probabilities do not, in general, determine a sample design since selection events 
for different sites need not be independent.  The fact that one site has been selected may (or 
may not) affect the probability of another site being selected.  It certainly does so in the case 
of the simple random sample of 10 from a population of 100.  The unconditional probability 
of individual site selection is 1/10; the probability of a site selection given that one has 
already been chosen is 9/99, and so forth; the probability of selection for the remaining sites 
declines as more and more sites are chosen.   

A contrasting sample design in which site selection probabilities are independent is the list-
sequential Bernoulli scheme.  This method involves assigning a 10% selection probability to 
each site, one by one.  For example, draw a number at random between 0 and 1; and set the 
selection criteria to sites with an assigned number that is less than or equal to .1.  The 
selection probability for each site is 10%, as with the simple random sample design, but 
selection probabilities are now independent, and the total number in the sample is now a 
random variable with a binomial distribution.  

Good sample designs and statistical analysis plans for program evaluation have some things 
in common: they make full use of already available information to, in effect, form prior 
guesses about evaluated savings at particular sites; and they arrange to sample more heavily 
amongst sites about which there is more uncertainty.  The uncertainty obviously has to do 
with what we already know about the sites we are sampling.  In the case of program 
evaluation, we typically know a fair amount -- at least the class and size of equipment 
installed at a given site and the magnitude of claimed savings (in kWh, kW, or therms).  The 
precise meaning of "uncertainty" used depends on the plan of subsequent analysis, but is 
usually expressed as a standard deviation.  Here we lay out two orthodox, fairly simple and  
much-tested sample design and statistical analysis approaches.  We also suggest some 
variations and more complex approaches, which might be useful. 

Classical Stratified Sampling and Mean Estimation 

The sampling approach with the longest pedigree is stratified sampling, coupled with direct 
estimation of total program savings as a weighted sum of individual stratum means. Suppose, 
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for the sake of illustration, that we are interested in evaluating claimed kWh savings for a 
program. We would proceed by sorting the sites in the program database by magnitude of 
kWh claimed savings, and breaking up this sorted list into some predetermined number of 
strata.  An individual stratum would be defined as those sites with claimed kWh savings 
lying in some interval.  

For the moment, leave aside the question of how many strata we would choose and where we 
would draw the boundaries between adjacent strata.  Given that our population of program 
sites has been divided into strata, and each site has been assigned to a stratum, how do we 
proceed to draw our sample?  The principle that we sample most heavily where we are least 
certain is the key.  Consider the standard deviation of evaluated savings within each 
population stratum around mean evaluated savings in that stratum. This is a measure of the 
variability within the stratum of evaluated savings.  If we knew, or could guess at this 
number for all strata, then it would be optimal (in the sense of having the smallest sampling 
variance) to sample in each stratum proportionately to that stratum's standard deviation. The 
higher the standard deviation, the more sample points, relatively, we take from that stratum.  

This scheme for determining sample sizes in each stratum, given a fixed overall sample size, 
is called the Neyman allocation, after its originator.  The Neyman allocation formula can also 
be used to determine the minimum number of sample points needed to attain a desired 
variance of final estimates.  In practice, of course, we do not know the variance of evaluated 
savings across sites within each stratum; but if we are willing to assume that the variance of 
claimed savings within each stratum is roughly equal to, or proportional to, variance of 
evaluated savings, then we can plug these claimed savings variances into the Neyman 
Allocation formula to get an optimal sample design, given the strata.   

In general, one observes that savings standard deviations within program strata grow at least 
proportionately to the average size of claimed savings within those strata.  Thus the Neyman 
allocation directs us to sample the strata containing large-savings sites with much higher 
relative frequencies than the strata containing small claimed-savings sites. Given how 
skewed program population claimed savings are, in fact, it is common to "census" the largest 
stratum, that is, to select every site into the sample.  

Strata Design 

So far we have not discussed the question of how to create the strata, but taken them as 
given.  For a fixed number of strata, there is an optimal way of creating stratum boundaries if 
we know the distribution that governs evaluated savings in the population (and if we plan to 
use the Neyman allocation to determine our sample once we have defined the strata). The 
(approximately optimal) rule is to cumulate equal amounts of the square root of the density 
function ( N yh s

h

H

h
=
∑

1
) into each stratum. This is the Dalenius-Hodges formula.  

Of course, we do not actually know the distribution of evaluated savings within the program 
population, any more than we know the within-stratum variances of evaluated savings used 
by the Neyman allocation.  If we did know this, there would be no need to do any evaluating. 
The solution, as previously, is to use the distribution of claimed savings within the program 
population.  In practice it can be tricky to estimate a density function from a finite and highly 
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skewed population.  A procedure often used is to assume some parametric family of skewed 
distributions (such as the exponential distribution) and fit that to the program population of 
claimed savings before invoking the Dalenius-Hodges method.  The Dalenius-Hodges 
method, coupled with the Neyman allocation, implies that equal, or nearly equal, numbers of 
sites should be selected from each stratum.  This is a useful check to see that one's routines 
are working properly.  

Once the sample is drawn and evaluations are conducted, we can apply standard formulas to 
estimate population-level savings, or equivalently, per-site savings, and an accompanying 

variance. The formula used to estimate population total evaluated savings is N yh s
h

H

h
=
∑

1
.  In 

this formula, there are presumed to be H strata; Nh  is the program population count in the h-
th stratum; and ysh

 is the sample mean of evaluated savings for the h-th stratum. A 

mathematically equivalent and more general form of the same formula is yk kk

n
π

=∑ 1
.  In 

this formula, n is the total sample size, yk  is evaluated savings at the k-th site; and πk  is the 
probability of selection for the k-th site.  Each sampled site is weighted in the overall 
estimate by the inverse of its prior likelihood of selection. This formula can be turned into 
the preceding, more specialized form by noting that the selection probabilityπk  for sampled 
sites in the h-th stratum is n Nh h , the number sampled from the h-th stratum divided by the 
population count from the h-th stratum. 

Ratio Estimators 

One way to think about the preceding analysis procedures (stratifying on the claimed values 
of the variable we wish to measure, estimating the mean in-sample evaluated value for each 
stratum, and then taking the sum of these means weighted by the population of sites in each 
stratum), is that we are fitting an ANOVA-style dummy regression model, where the 
dependent variable in the regression is evaluated site savings, and the dummy variable 
regressors represent membership in different strata. That is, a regression model of the form  

yk h k hh

H
k= +

=∑ δ β ε,1
 

where δh k,  is a dummy variable, which is one if the k-th site belongs to the h-th stratum. The 
βh coefficient estimates for these δh k, dummy variables are each stratum’s sample mean of 
evaluated savings.  

In this regression, claimed savings numbers are used only to determine stratum membership. 
In effect, evaluated savings for sites not in the sample are estimated simply as the sample 
mean of evaluated savings in that stratum. This point of view prompts one to wonder if there 
is not a way to use each site's claimed savings directly to better estimate evaluated savings at 
non-sampled sites. In fact there is such a method.  In its simplest form it is the well-known 
ratio estimator. That is, we think of the relationship between evaluated savings and claimed 
savings as being 
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y xk k k= +β ε  

where yk  is the evaluated savings for site k and xk  is claimed savings for the same site. We 
can think of the ratio estimator, like the preceding model, as the estimation of a regression 
relationship; but rather than a dummy variable regression we are now estimating a simple 
regression without an intercept.  

Whereas before our task was to estimate means for each stratum, now our task is to estimate 
a single ratio coefficient β .  Since we are thinking of this as a regression relationship, let us 
assume that the k-th site error termεk  has a variance σk

2  which is known at least to a factor 
of proportionality, and which may vary across sites. Assuming that a sample has been drawn, 
how would one go about estimating the ratio coefficient? One could of course use the 
ordinary least squares formula, with evaluated savings as the dependent variable and claimed 
savings as the regressor.  But given that we have a sample in which different sites may have 
had different selection probabilities πk  and given that we are allowing the error term 
variance σk

2  to differ across sites, this is suboptimal. A better approach is to use a formula 
which includes a GLS weight to deal with differing error variances and a π -weighting to 
deal with differing selection probabilities: 

$β
π σ

π σ
=
∑
∑

x y

x
k k k ks

k k ks

2

2 2
 

Our estimate for population evaluated savings is then the sum of all claimed savings times 
this estimated ratio coefficient7. A frequently used simplifying assumption is that the error 
term variances σk

2  are proportional to xk . Substituting this into the above formula leads to 
the radical simplification: 

$β
π

π
=
∑
∑

y

x
k ks

k ks

 

This is the classic ratio estimator. We note that it is merely the ratio of the direct, ANOVA-
style stratified sample-style population total estimate for evaluated savings to what appears to 
be that for claimed savings (of course we actually know the values of xk  for the entire 
population).  

                                                           
7 Actually, this is not quite accurate.  We know from regression theory that the sum of residuals in a fitted GLS 

regression vanishes if error term variance can be expressed as a linear function of the regressors.  This holds 
true, for example, in a regression with a constant term and standard OLS-assumption homoskedastic residuals; 
it holds true for the ratio estimator only if the error term variances σk

2  are assumed to be proportional to their 

xk 's.  Otherwise, we need to include an estimate of the program population sum of the error term residuals in 

our estimate of population total savings: ek kk

n
π

=∑ 1
, where the ek 's are the regression residuals and the 

πk 's are the selection probability for each sampled point. 
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The above ratio analytical approach could be applied to any sample, assuming the sample 
design (and consequently the π -weights) is known.  It could, for example, certainly be 
applied to a sample drawn using a Neyman allocation with a Dalenius-Hodges stratification; 
but that particular sample design scheme is no longer optimal. We refer back to the basic 
principle that we wish to sample with greater relative frequency sites about which our initial 
"guesses" are less certain.  

Since we are now assuming the regression relationship y xk k k= +β ε , with the error term 
varianceσk

2  known, the appropriate measure of the uncertainty attached to a given site is now 
the error term variance. It turns out that it is optimal to give each site a selection probability 
proportional to its σk  (the standard deviation, not the variance). This is very like the 
Neyman allocation rule, where we sampled from a stratum proportionally to its intra-sample 
standard deviation.  But unlike the Neyman allocation rule, where all sites in a given stratum 
in effect shared a common uncertainty measured by the intra-stratum variability of savings, 
here we allow the error term variance to differ across individual sites.  The classic simplest-
case ratio estimator, for example, in effect assumes that the variance varies across sites 
proportionally to xk . 

A selection probability proportional to its error standard deviation must be attached to each 
site.  Since error standard deviations are permitted to vary across sites, it follows that each 
site in the population may optimally have a different selection probability. One method for 
drawing a sample which satisfies this requirement is a list-sequential scheme; we go down a 
list of sites in our population matched with their appropriate selection probabilities πk  and 
for each site perform some independent random experiment which results in sample 
inclusion for that site with likelihood πk . This scheme, though simple to execute as these 
things go, has the drawback of a random sample size.  

Developing a sample design which delivers a fixed sample size and yet permits each site to 
have a unique selection probability is in fact difficult.  In practice, a suggested way to 
achieve a fixed sample size along with selection probabilities which are near-optimal is 
stratified sampling, with the population of sites sorted on their error standard deviation 
values σk . The relative frequency of sampling in each stratum is then taken proportional to 
the averageσk  of sites in that stratum.  

In the case of the classical ANOVA model, each stratum introduced implies another 
parameter (a stratum mean) to estimate. Observe that this is not true here, so one can be more 
liberal in creating strata.  A rule for determining optimal stratum boundaries given a fixed 
number of strata is the equal aggregate-σ rule: the sum of the σk ’s in each stratum should be 
approximately equal. This is reminiscent of, but different from, the Dalenius-Hodges equal 
aggregate f  rule. 

Similarities, Differences, and Generalizations 

For purposes of constructing a sample design, the classical ANOVA model estimates the 
uncertainty attached to a given site as the standard deviation of savings across sites in its 
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stratum.  This standard deviation can be proxied by the standard deviation of claimed savings 
in that stratum. By contrast, the ratio estimator requires that (up to a factor of proportionality) 
the error-term uncertainty associated with each site be specified a priori.  

A common, convenient, but not necessarily appropriate assumption is that the error term 
variance is proportional to the size of claimed savings. An offsetting benefit of the ratio 
model’s greater complexity is that it can be said to provide a direct estimate of the 
“verification ratio”, a quantity of great interest in evaluation work.  In addition, the ratio 
model makes better use of known information (claimed savings) in estimating savings for 
non-sampled sites. But which is a “better” analytical approach is really an empirical question 
and depends on how well the model assumptions fit the point scatter encountered in the 
actual finite program population.  

Both the stratified-sample ANOVA mean estimation approach and single ratio approach can 
be seen as members of a larger class of regression estimators. These regression models tie 
prior information (known for all sites) to evaluated information known only for sampled 
sites. More complex regression relations could easily be specified. In the case of the ratio 
estimator one could, for example, posit a separate ratio for different kinds of sites. In the case 
of the ANOVA model one could add strata (and consequently additional stratum mean 
estimates) for different equipment types. In practice the relatively small number of sites in a 
sample place severe constraints on the number of parameters one should introduce. As 
anyone who has ever estimated regressions knows, trying to estimate too many parameters 
with a relatively small data set leads to unstable, noisy parameter estimates.  

In determining how many sites to sample to achieve a desired precision level, it is important 
to be conservative, that is, to sample more sites than the formulas suggest are needed. A good 
reason for this is that the formulas assume we know things we don’t in fact know: the 
Neyman allocation formulas, for example, apply to standard deviations of actual savings, but 
are used with claimed savings numbers. A prior estimate of needed sample size in the ratio 
model relies on assumptions regarding the magnitude of error variances.  

In general, if the claimed savings numbers turn out to be poor proxies for evaluated savings, 
the estimates will be noisier than expected. The estimates will still be statistically valid, 
however. If, in effect, the ratio estimator has a low R-square, or the stratum variances fed 
into the Neyman Allocation formulas turn out to be way off, the result will be a sample 
design that, in retrospect, was inaccurate.  The statistical calculations performed on this 
sample will, however, accurately deliver the bad news -- that the variance of our estimates is 
high. 

If we know, or suspect beforehand, that the claimed savings numbers in the program 
population are very poor proxies for evaluated savings, then rather than simply "riding into 
the valley of death" it may be appropriate to consider a more complex double-sampling 
design. The basic idea behind double sampling is to draw an initial large sample for a 
relatively cursory review - in effect, filling in for the inaccurate program data base; and on 
the basis of what is learned in this first pass, drawing a subsample from the large initial 
sample for more detailed evaluation.  
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A variant of the double-sampling approach recently developed in evaluation work is the so-
called “double ratio analysis”8. We stress that the burden in additional complexity of double 
sampling approaches is high, and they should be contemplated only if the program database 
is thought to be very bad.  The issue is not merely extra work, but also precision.  Multi-
layered designs in effect estimate more parameters. In the case of double ratio analysis, for 
example, an overall verification ratio is estimated as the product of two separate component 
verification ratios, each of which is measured with error; where it is not really needed the 
double ratio approach can thus produce worse estimates than a one-level sample design.  

For the same reasons we think that “Russian doll” approaches, in which a small number of 
sites receive gold-plated analysis such as end-use metering, a larger group of sites get a less 
expensive form of engineering evaluation, and a yet larger sample get relatively cursory 
treatment, should be approached with caution. Not only are such sample designs terribly 
complex, but if the randomness introduced by each level of sampling is correctly taken into 
account, they are likely to produce noisier estimates than simpler designs. 

In our description of sample designs we have implicitly assumed that the sole criterion for 
choice of sample design is accurate estimation of evaluated savings in the program 
population, or equivalently, an overall verification ratio. We think this is appropriate. The 
principal purpose of evaluation is evaluation. The impressive gains in estimation efficiency 
achievable through a focused sample design---that is, sampling more heavily where we are 
more uncertain about what we most want to measure---can easily be lost if the sample design 
is loaded with competing objectives, such as estimating verification ratios for separate 
equipment types.  

That is not to say that we are prohibited from estimating other quantities of interest; in fact 
we are free to do so. We noted previously that the modeling approach employed and the 
sample design are in important particulars independent. There can be only one sample 
design, and one sample, but many different models can be fitted to the same sample.  
Assuming there is at least one sausage-making machine retrofit site in the sample, one is free 
to estimate a separate realization rate for sausage machine retrofits. But the sample design 
should not be modified to improve the accuracy of the estimate of this relatively unimportant 
realization rate at the expense of the estimate for the overall realization rate. 

Suggested References  

For exposition of classical stratified sampling and ratio estimators, we suggest Cochran, 
Sampling Techniques (John Wiley, 1977). A good reference for the later “regression” 
approach to sampling discussed here is Sarndal, Model-Assisted Survey Sampling (Springer-
Verlag, 1992). 

 

 

 
                                                           
8 See "Double Ratio Analysis: Final Report" Report # CIA-93-X01B, September 1993 
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4 Quality Assurance Guidelines for Estimating Net-To-Gross Ratios Using 
Participant Self Reports  

 

4.1 Issues Surrounding the Validity and Reliability of Self-Report Techniques 
A central intent of utility DSM program evaluations is to identify that portion of the gross 
load impacts associated with a program-supported measure installation, that would not have 
been accomplished in the absence of the program. That portion is the net load impacts. In 
some cases, net load impacts may be estimated directly using regression models.  Where it is 
not possible to use regression models,  an alternate approach to estimating  the program 
impact that is due to free ridership and the net-to-gross (NTGR) ratio (defined as one minus 
the proportion of free ridership) may be required. This approach commonly involves the use 
of the self-report method, i.e., asking program participants directly whether they would have 
installed the same thing without the program. This technique must deal with several 
methodological problems. 
 
One of the problems inherent in asking program participants if they would have installed the 
same equipment or adopted the same energy-saving practices without the program is that we 
are asking them to recall what has happened in the past. Worse than that is the fact that what 
we are really asking them to do is report on a hypothetical situation. In many cases, the 
respondent may simply not know and/or cannot know what would have happened in the 
absence of the program. Even if the customer has some idea of what would have happened, 
there is, of necessity, uncertainty about it. 
 
The situation just described is a circumstance ripe for biased answers and answers with low 
reliability, where reliability is defined as the likelihood that a respondent will give the same 
answer to the same question whenever or wherever it is asked. It is well known in the 
interview literature that the more factual and concrete the information the survey requests, 
the more accurate responses are likely to be. Where we are asking for motivations and 
processes in hypothetical situations that occurred one or two years ago, there is room for 
bias. Bias in responses is commonly thought to stem from two origins. First is the fact that 
some respondents may believe that claiming no impact for the program is likely to cause the 
program to cease, thus removing future financial opportunities from therespondent. Closely 
related to this is the possibility that the respondents may want to give an answer that they 
think will be pleasing to the interviewer. The direction of the first bias would be to increase 
the NTG ratio, and the second would have an unclear effect – up or down, depending on 
what the respondent thinks the interviewer wants to hear. 
 
The other commonly recognized motivation for biased answers is that some people will like 
to portray themselves in a positive light; e.g., they might like to think that they would have 
installed energy-efficient equipment without any incentive. This type of motivation could 
result in an artificially low net-to-gross ratio. 
 
Beyond the fact that the situations of interest have occurred in the past and judgments about 
them involve hypothetical circumstances, they are often complex. No one set of questions 
can apply to all decision processes that result in a program-induced course of action.  Some 
installations are simple, one-unit measures, while others involve many units, many different 
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measures, and installations taking place over time. The decision to install may be made by 
one person or several people in a household, an individual serving as owner/operator of a 
small business, or, in the case of large commercial, industrial, or agricultural installations. by 
multiple actors at multiple sites. Some measures may have been recommended by the utility 
for years before the actual installation took place, and others may have been recommended 
by consultants and/or vendors, making degree of utility influence difficult to pin down. Some 
efficiency projects may involve reconfiguration of systems rather than simple installations of 
energy-efficient equipment.  
 
This type of complexity and variation across sites requires thoughtful design of survey 
instruments. Following is a listing and discussion of the essential issues that should be 
considered by evaluators using self-report methods, together with some recommendations on 
reporting the strategies used to address each issue.  
 
These should be regarded as recommendations for minimum acceptable standards for the use 
of self-report methods to estimate net-to-gross ratios. Much of this chapter focuses on self-
report methodologies for developing NTGRs for energy efficiency improvements in all 
sectors regardless of the size of the expected savings and the complexity of the decision 
making processes. However, in a given year, energy efficiency programs targeted for 
industrial facilities are likely to achieve a relatively small number of installations with the 
potential for extremely large energy savings at each site.  Residential programs often have a 
large number of participants in a given year, but the energy savings at each home, and often 
for the entire residential sector, are small in comparison to savings at non-residential sites.  
Moreover, large industrial customers have more complex decision making processes than 
residential customers. As a result, evaluators are significantly less likely to conduct 
interviews with multiple actors at a single residence or to construct detailed case studies for 
each customer – methods that are discussed in detail in the following sections.  It may not be 
practical or necessary to employ the more complex techniques (e.g., multiple interviews at 
the same site, case-specific NTGR development) in all evaluations.  Specifically, sections 
4.2, 4.5, 4.7, 4.9, and 4.12 are probably more appropriate for customers with large savings 
and mare complex decision making processes. Of course, evaluators are free to apply the 
guidelines in these sections even to customers with smaller savings and relatively simple 
decision making processes.  
 

4.2 Identifying the Correct Respondent 
Recruitment procedures for participation in an interview involving self-reported net-to-gross 
ratios must address the issue of how the correct respondent(s) will be identified. 
Complexities to be addressed include situations commonly encountered in large commercial 
and industrial facilities, such as: 
 

1. Different actors have different and complementary pieces of information about the 
decision to install, e.g., the CEO, CFO, facilities manager, etc.; 

2. Decisions are made in locations such as regional or national headquarters that are 
away from the installation site; 

3. Significant capital decision-making power is lodged in commissions, committees, 
boards, or councils; and 



 

 49

4. There is a need for both a technical decision-maker and a financial decision-maker to 
be interviewed (and in these cases, how the responses are combined will be 
important). 

 
An evaluation using self-report methods should employ and document rules and procedures 
to handle all of these situations in a way that assures that the person(s) with the authority and 
the knowledge to make the installation decision are interviewed. 
 

4.3 Set-Up Questions 
The decisions that the net-to-gross questions are addressing may have occurred as long as 
two years prior to the interview. Regardless of the magnitude of the savings or the 
complexity of the decision-making process, questions may be asked about the motivations 
for making the decisions that were made, as well as the sequence of events surrounding the 
decision. Sequence and timing are important elements in assessing motivation and program 
influence on it. Unfortunately, sequence and timing will be difficult for many respondents to 
recall two years later, which is the standard schedule for first-year load impact evaluation 
governed by the Protocols. This makes it essential that the interviewer guide the respondent 
through a process of establishing benchmarks against which to remember the events of 
interest. Failure to do so could well result in, among other things, the respondent 
“telescoping” some events of interest to him into the period of interest to the evaluator. 
Motivations, competing alternatives, and battles lost could recede in memory. Set-up 
questions that set the mind of the respondent into the train of events that led to the 
installation, and that establish benchmarks, can minimize these problems. However, one 
should be careful to avoid wording the set-up questions in such a way so as to bias the 
response in the desired direction.   
 
Set-up questions should be used at the beginning of the interview, but they can be useful in 
later stages as well. Respondents to self-report surveys frequently are individuals who 
participated in program decisions and, therefore, may tend to provide answers ex post that 
validate their position in those decisions. Such biased responses are more likely to occur 
when the information sought in questions is abstract, hypothetical, or based on future 
projections, and are less likely to occur when the information sought is concrete. To the 
extent that questions prone to bias can incorporate concrete elements, either by set-up 
questions or by follow-up probes, the results of the interview will be more persuasive. 
 
An evaluation using self-report methods should employ and document a set of questions that 
adequately establish the set of mind of the respondent to the context and sequence of events 
that led to decision(s) to adopt a DSM measure or practice, including clearly identified 
benchmarks in the customer’s decision-making process. 
 

4.4 Use of Multiple Measures  
Regardless of the magnitude of the savings or the complexity of the decision-making 
process, one should assume that using multiple questionnaire items (both quantitative and 
qualitative) to measure one construct is preferable to using only one item, as it is well-
documented in the measurement literature that reliability is increased by the use of multiple 
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items unless some items are uncorrelated with the other items (Blalock, 1970; Crocker & 
Algina; 1986; Duncan, 1984). 

4.5 Use of Multiple Respondents 
In situations with relatively large savings and more complex decision-making processes, one 
should use, to the extent possible, information from more than one person familiar with the 
decision to install the efficient equipment or adopt energy-conserving practices or procedures 
(Patten, 1987; Yin, 1994). 

4.5.1 Measures of Reliability 

The internal consistency of multiple-item scales should not be assumed. Techniques 
available for testing reliability include: split-half correlations, alternate forms tests, and 
Cronbach’s alpha (Nunnally, 1978; Crocker & Algina, 1986; Cronbach, 1951; DeVellis, 
1991). 
An evaluation using self-report methods should employ and document some or all of these 
tests or other suitable tests to evaluate reliability, including a description of why particular 
tests were used and others were considered inappropriate. 
 
For those sites with relatively large savings and more complex decision-making processes, 
both quantitative and qualitative data may be collected from a variety of sources (e.g., 
telephone interviews with the decision maker, telephone interviews with others at the site 
familiar with the decision to install the efficient equipment, paper and electronic program 
files, and on-site surveys). These data must eventually be integrated in order to produce a 
final NTGR.9 Of course, it is essential that all such sites be evaluated consistently using the 
same instrument. However, in a situation involving both quantitative and qualitative data, 
interpretations of the data may vary from one evaluator to another, which means that, in 
effect, the measurement result may vary. Thus, the central issue here is one of reliability, 
which can be defined as obtaining consistent results over repeated measurements of the same 
items.  
 
To guard against such a threat at those sites with relatively large savings and more complex 
decision-making processes, the data for each site should be evaluated by more than one 
member of the evaluation team. Next, the resulting NTGRs for the projects should be 
compared, with the extent of agreement being a preliminary measure of the so-called inter-
rater reliability. Any disagreements should be examined and resolved and all procedures for 
identifying and resolving inconsistencies should be thoroughly described and documented 
(Sax, 1974; Patton, 1987).  

4.5.2 Handling Apparent Inconsistencies 

When multiple questionnaire items are used to calculate a free ridership probability there is 
always the possibility of apparently contradictory answers. Contradictory answers indicate 
problems of validity and/or reliability (internal consistency). Occasional inconsistencies 
indicate either that the respondent has misunderstood one or more questions, or is answering 
according to an unanticipated logic. Apparent inconsistencies should be identified and 
                                                           
9 For a discussion of the use of qualitative data see Section 4.11. 
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handled before the interview is over. If the evaluator waits until the interview is over to 
consider these problems, there may be  no chance to correct misunderstandings on the part of 
the respondent or to detect situations where the evaluator brought incomplete understanding 
to the crafting of questions. In some cases, the savings at stake may be sufficiently large to 
warrant a follow-up telephone call to resolve the inconsistency. 
 
However, despite the best efforts of the interviewers, some inconsistencies may remain. 
When this occurs, evaluator could decide which of the two answers, in their judgement has 
less error, and discard the other. Or, one could weight the two inconsistent responses in a 
way that reflects the evaluator’s estimate of the error associated with each, i.e., a larger 
weight could be assigned to the response that, in their judgement, contains less error.  
 
Finally, an evaluation report using self-report methods should describe the approach  to 
identifying and resolving apparent inconsistencies. The report should include : 1) a 
description of contradictory answers that were identified, 2)  whether and how it was 
determined that the identified inconsistencies were significant enough to indicate problems 
of validity and/or reliability (internal consistency), and 3) how the indicated problems were 
mitigated. These rules for resolving inconsistencies should be established, to the extent 
feasible, before the analysis begins. Details regarding the establishment and use of such rules 
are provided in Section 4.11.2.  

4.5.3 Consistency Checks 

One of the potential problems with self-report methods is the possibility of answering the 
questions in a way that conforms to the perceived wishes of the interviewer, or that shows 
the respondent in a good light. One of the ways of mitigating these tendencies is to ask one 
or more questions specifically to check the consistency and plausibility of the answers given 
to the core questions. Inconsistencies can highlight efforts to “shade” answers in socially 
desirable directions. While consistency checking won’t overcome a deliberate and well-
thought-out effort to deceive, it will often help where the process is  subtler or where there is 
just some misunderstanding of a question.  
 
An evaluation using self-report methods should employ a process for setting up checks for 
inconsistencies when developing the questionnaire items, and describe and document the 
methods chosen as well as the rationales for using or not using the techniques for mitigating 
inconsistencies. 

4.6 Making the Questions Measure-Specific 
It is important for evaluators to tailor the wording of central free ridership questions to the 
specific technology or measure that is the subject of the question. It is not necessarily 
essential to incorporate the specific measure into the question, but some distinctions must be 
made if they would impact the understanding of the question and its potential answers. For 
instance, when the customer has installed equipment that is efficiency rated so that 
increments of efficiency are available to the purchaser, asking that respondent to indicate 
whether he would have installed the same equipment without the program could yield 
confusing and imprecise answers. The respondent will not necessarily know whether the 
evaluator means the exact same efficiency, or some other equipment at similar efficiency, or 
just some other equipment of the same general type. Some other possibilities are:  
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1. Installations that involve removal more than addition or replacement (e.g., delamping 

or removal of a second refrigerator or freezer in a residence); 
2. Installations that involve increases in productivity rather than direct energy load 

impacts;  
3. Situations where the energy-efficiency aspect of the installation could be confused 

with a larger installation; and  
4. Installation of equipment that will result in energy load impacts, but where the 

equipment itself is not inherently energy-efficient. 
 
An evaluation using self-report methods should include and document an attempt to identify 
and mitigate problems associated with survey questions that are not measure-specific, and an 
explanation of whether and how those distinctions are important to the accuracy of the 
resulting estimate of freeridership. 
 

4.7 Partial Freeridership 
Partial freeridership can occur when, in the absence of the program,  the participant would 
have installed something more efficient than the program-assumed baseline efficiency but 
not as efficient as the item actually installed as a result of the program. When there is a 
likelihood that this is occurring, an evaluation using self report methods should include and 
document attempts to identify and quantify the effects of such situations on net savings. 
Partial free-ridership should be explored for those customers with large savings and complex 
decision making processes.  
In such a situation, it is essential to develop appropriate and credible information to establish 
precisely the participant’s alternative choice. The likelihood that the participant would really 
have chosen a higher efficiency option is directly related to their ability to clearly describe 
that option.  
 
An evaluation using self-report methods should include and document attempts to identify 
and mitigate problems associated with partial freeridership, when applicable. 
 

4.8 Deferred Freeridership 
 
Deferred free riders are those customers who would, in the absence of the program, have 
installed exactly the same equipment that they installed through the utility DSM program, but 
the utility induced them to install the equipment earlier than they would have otherwise. That 
is, the utility accelerated the timing installation of the equipment. Because determining the 
extent of utility influence on the timing of the installation is a complex process, an evaluator 
should avoid relying on a single question asked of the key decision-maker. Rather, an 
evaluator should examine all available data and determine whether the preponderance of 
evidence supports the conclusion of deferred free ridership. Data from such sources as 
additional closed- and open-ended questions asked of the key decision-maker, information 
obtained from other people at the site familiar with the decision to install the efficient 
equipment, and information gathered from the program paper files should also be collected 
and analyzed. Rules for integrating the responses to closed- and open-ended questions should 
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be established, to the extent feasible, before the analysis begins. Details regarding the 
establishment and use of such rules are provided in Section 4.11.2.  
 
Unfortunately, evaluation budgets may only permit such data to be collected and analyzed 
for those customers with larger savings. For those customers with the smaller savings, the 
NTGR may be based only on the responses from close-ended questions obtained from the 
key decision-maker. In such cases, closed-ended questions regarding utility influence on both 
what was installed and when it was installed could be asked. These answers could be 
analyzed mechanically using an algorithm. However, to the extent that closed-ended 
questions are unable to capture fully the complexity of the decision-making process, any 
resulting conclusions regarding deferred free ridership may be biased, with the direction of 
the bias unknown.  
 
Whenever deferred free ridership is identified by a utility, the onus is on the utility to account 
for such free ridership in the stream of future utility savings. This could be done by 
calculating a lifecycle NTGR and applying it throughout the effective useful life of the 
equipment. Or, a utility could calculate a first-year NTGR and adjust the stream of savings to 
account for the fact that the savings associated with deferred free riders will be reduced to 
zero in the year in which they said they would have installed the same equipment in the 
absence of the program. 
 
 

4.9 Third-Party Influence 
 
Currently, there is no standard method for capturing the influence of third parties on 
customer’s decision to purchase energy efficient equipment. Third parties who may have 
influence in this context include market actors such as store clerks, manufacturers (through 
promotional literature, demonstrations, and in-person marketing by sales staff), equipment 
distributors, installers, developers, engineers, energy consultants, and architects. When one 
chooses to measure the effect of third parties, one should keep the following principles in 
mind: 
 
1. The method chosen should be balanced. That is, the method should allow for the 

possibility that the third-party influence can increase or decrease the NTGR that is based 
on the customer’s self report.  
 

2. The rules for deciding which customers will be examined for potential third party 
influence should balanced. That is, the pool of customers selected for such examination 
should not be biased towards ones for whom the evaluator believes the third-party 
influence will have the effect of influencing the NTGR in only one direction. 
 

3. The plan for capturing third-party influence should be based on a well-conceived causal 
framework. 

 
The onus is on the evaluator to build a compelling case using a variety of quantitative and/or 
qualitative data for changing the customer’s NTGR.  
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4.10 Scoring Algorithms 
A consequence of using multiple questionnaire items to assess the probability of 
freeridership (or its complement) is that decisions must be made about how to combine them. 
Should two items be averaged or should one supersede the other? Do all items have equal 
weight or are some more important indicators than others? Answers to these questions can 
have a profound effect on the final NTGR estimate. These decisions are incorporated into the 
algorithm used to combine all pieces of information to form a final result. All such decisions 
must be described and justified by evaluators.  
 

4.11 Handling Non-Responses and “Don’t Knows” 
In this section, we address the situation where customers selected for the evaluation sample 
refuse to be interviewed or do not complete an attempted interview or questionnaire. When 
this happens, a decision must be made about how to treat that case in the process of 
aggregating participant-level results to program-level results. For example, making no 
decision assumes that the non-respondents would have answered the questions at the mean. 
Thus, their net-to-gross ratios would assume the mean value.  This may or may not be a 
reasonable assumption, but it should not go unexplained. It is essential to do an analysis to 
determine the characteristics of the non-respondents in order to decide what assumptions 
should be made about their unanswered questions. Evaluators should do such an analysis and 
make judgments on what customer characteristics are likely to be relevant to answers to net-
to-gross questions. These judgments and the decisions that flow from them must be described 
and rationales provided for them. 
 
Respondents who do answer interview questions may nevertheless answer some questions 
with a “don’t know” response. When this answer is received for a question included in the 
net-to-gross algorithm, decisions must be made about how to handle such a response.  It is 
clear that some questions are more central than others, implying different assumptions and 
decisions. A decision about a “don’t know” answer to core questions concerning what the 
respondent would have done absent the program may well be different than the decision 
about handling the “don’t know” answer to a question about the timing of learning about the 
program or the timing of measure installation without the program. Evaluators should decide, 
in advance, how to handle “don’t know” answers and justify those decisions. 
 

4.12 The Use of Qualitative Data and Reporting Requirements 
 
The M&E Protocols focus entirely on quantitative methods that stress such elements as 
quasi-experiments, paper and pencil “objective” instruments containing closed-ended 
questions, and multivariate statistical analyses. However, many DSM evaluators believe that 
additional qualitative data regarding the economics of the customer’s decision and the 
decision process itself can be very useful in supporting or modifying a quantitatively-based 
results (Britan, 1978; Weiss and Rein, 1972; Patton, 1987). Qualitative methods stress in-
depth, open-ended interviews, direct observation, and written documents, including such 
sources as open-ended questions and program records.  
 
There is wide agreement on the value of both qualitative and quantitative data in the 
evaluation of many kinds of programs. Moreover, it is inappropriate to cast either approach 
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in an inferior position. The complexity of organizational decisions regarding the purchase of 
efficient equipment can be daunting, especially in large organizations for which the savings 
are often among the largest. In such situations, the reliance on only quantitative data can miss 
some important elements of the decision. The collection and interpretation of qualitative data 
can be especially useful in broadening our understanding of a utility’s role in this decision.  
 
When one chooses to complement a quantitative analysis of the NTGR with a qualitative 
analysis, there are a few very basic concerns that one must keep in mind.  

4.12.1 Data Collection 

Information relevant to the purchase and installation decision can include: 
1. Program paper files (correspondence between DSM program staff and the customer, 

evidence of economic feasibility studies conducted by the utility or the customer, 
correspondence among the customer staff, other competing capital investments 
planned by the customer) 

2. Program electronic files (e.g., program tracking system data, past program 
participation) 

3. Interviews with other people at the site who are familiar with the program and the 
choice (e.g., operations staff) 

4. Open-ended questions on structured interviews with the key decision maker and other 
staff who may have been involved with the decision. 

 
Where appropriate, for example, in the case of large-scale commercial and industrial sites, 
these data should be organized and analyzed in  the form of a case study. 
 

4.12.2 Establishing Rules for Data Integration 

Before the analysis begins, one should establish, to the extent feasible, rules for the 
integration of the quantitative and qualitative data.  These rules should be as specific as 
possible and be strictly adhered to throughout the analysis. Such rules might include 
instructions regarding when the NTGR based on the quantitative data should be overridden 
based on qualitative data, how much qualitative data is needed to override the NTGR based 
on quantitative data, how to handle contradictory information provided by more than one 
person at a given site, how to handle situations when there is no decision-maker interview, 
when there is no appropriate decision-maker interview, or when there is critical missing data 
on the questionnaire, and how to incorporate qualitative information on deferred 
freeridership.  

One must recognize that it is difficult to anticipate all the situations that one may encounter 
during the analysis. As a result, one may refine existing rules or even develop new ones 
during the initial phase of the analysis. One must also recognize that it is difficult to develop 
algorithms that effectively integrate the quantitative and qualitative data. It is therefore 
necessary to use one’s judgement in deciding how much weight to given to the quantitative 
and qualitative data and how to integrate the two.  
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4.12.3 Analysis 

A case study is an organized presentation of all the information available about a particular 
customer site with respect to all relevant aspects of the decision to install the efficient 
equipment. When a case study approach is used, the first step is to pull together the data 
relevant to each case and write a discrete, holistic report on it (the case study). In preparing 
the case study, redundancies are sorted out, and information is organized topically. This 
information should be contained in the final report.  
 
The next step is to conduct a content analysis of these data. This involves identifying 
coherent and important examples, themes, and patterns in the data. The analyst looks for 
quotations or observations that go together and that are relevant to the customer’s decision to 
install the efficient equipment. Guba (1978) calls this process of figuring out what goes 
together “convergence,” i.e., the extent to which the data hold together or dovetail in a 
meaningful way. Of course, the focus here is on evidence related to the degree of utility 
influence in installing the efficient equipment. 
 
Sometimes, all the data will clearly point in the same direction while, in others, the 
preponderance of the data will point in the same direction. Other cases will be more 
ambiguous. In all cases, in order to maximize reliability, it is essential that more than one 
person be involved in analyzing the data. Each person must analyze the data separately and 
then compare and discuss the results. Important insights can emerge from the different ways 
in which two analysts look at the same set of data. Ultimately, differences must be resolved 
and a case made for a particular NTGR.  
 
Finally, it must be recognized that there is no single right way to conduct qualitative data 
analysis: 
 

The analysis of qualitative data is a creative process. There are no formulas, 
as in statistics. It is a process demanding intellectual rigor and a great deal 
of hard, thoughtful work. Because different people manage their creativity, 
intellectual endeavors, and hard work in different ways, there is no one right 
way to go about organizing, analyzing, and interpreting qualitative data.  (p. 
146) 

 
Ultimately, if the data are systematically collected and presented in a well-organized manner, 
and if the arguments are clearly presented, any independent reviewer can understand and 
judge the data and the logic underlying any NTGR. Equally important, the independent 
reviewers will have all the essential data to enable them to replicate the results, and if 
necessary, to derive their own estimates. 
 

4.13 Weighting 
 
The Protocols require estimates of the NTGR at the end use and program levels. Of course, 
such an NTGR must take into account the size of the impacts at the customer or project level. 
Consider two large industrial sites with the following characteristics. The first involves a 
customer whose self-reported NTGR is .9 and whose estimated annual savings are 200,000 
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kWh. The second involves a customer whose self-reported NTGR is .15 and whose estimated 
savings are 1,000,000 kWh. One could calculate an unweighted NTGR across both 
customers of .53. Or, one could calculate a weighted NTGR of .28. Clearly, the latter 
calculation is required.  
 
It is critical to recognize that how these NTGRs are applied by utilities in order to estimate 
the stream of benefits and earnings can produce very different results. First note that in order 
to produce a single end-use NTGR for all fuel impacts, one must first convert both gross and 
net kWh, kW, and therm impacts into a common metric, dollars.10 Once converted, the total 
end-use net impacts can be divided by the total end-use gross impacts to produce an end-use 
NTGR. Now, suppose a utility calculates an end-use NTGR and applies it to the stream of 
kWh, kW, and therm impact estimates. When this is done, certain distortions can occur. For 
example, if a customer has relatively small kWh and kW impacts but enormous therm 
impacts, the therm impacts will dominate the end-use NTGR. If a utility, in calculating its 
earnings claim, applies this end-use NTGR to the separate benefits streams for kWh, kW, and 
therms contained in its “E” tables, the net kWh and kW impacts will be inflated. The 
appropriate approach is to calculate three separate NTGRs for kWh, kW, and therms within 
each end use. A utility could then apply these NTGRs to the separate benefits streams for 
kWh, kW, and therms in their “E” tables.  
 

4.14 Assessing Spillover 
 
Spillover is defined  as : 
 

Reductions in energy consumption and/or demand in a utility’s service area 
caused by the presence of the DSM program, beyond program-related gross 
savings of participants. These effects could result from: (a) additional energy 
efficiency actions that program participants take outside the program as a result 
of having participated; (b) changes in the array of energy-using equipment that 
manufacturers, dealers, and contractors offer all customers as a result of 
program availability; and (c) changes in the energy use of non-participants as a 
result of utility programs, whether direct (e.g., utility program advertising) or 
indirect (e.g., stocking practices such as (b) above, or changes in consumer 
buying habits).11 

 
Part “a” of above definition is referred to as participant spillover. The following 
recommendations apply only to estimating participant spillover. 
 
All of the measurement issues that have been identified in these guidelines for attributing 
installations of energy-efficient equipment to program influence apply to spillover 
installations as well. It is important to remember that evaluations that include savings from 
spillover measures must estimate the gross savings using the same level of methodological 
rigor that was used for program-induced measures and practices.  In addition, there are extra 
                                                           
10 This can be done using the marginal costs associated with various costing periods. 
11  Protocols and Procedures for the Verification of Costs, Benefits, and Shareholder Earnings from 

Demand-Side Management Programs, page A-9. 
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hurdles that evaluators must address if a persuasive case is to be made for program influence 
on these installations. These hurdles stem from the fact that the identification of appropriate 
installations and their connection to a utility program is necessarily more vague (less 
concrete) than was the case for equipment specifically recommended or rebated by utilities. 
The reason is obvious. In traditional program evaluations, specific equipment is specified in 
program records, serving both the identification and the program connection functions. The 
issue is only in assessing the level of program impact on the installation decision at some 
point between 0 and 100 percent. For spillover measures, simply identifying the equipment 
and/or practices is at issue, as well as making any connection at all with a utility program. 
Evaluations that include spillover measures in net program impact should specify how each 
of the issues identified in this and previous sections have been addressed. Some 
acknowledgment of the “softness” of simple statements of utility influence, coupled with 
specific efforts to strengthen confidence in the statements, should be included in the 
evaluation report. 
 
There are many issues surrounding the matter of defining what equipment and/or practices 
are appropriate for consideration in spillover analyses.  These are beyond the scope of these 
guidelines. Criteria for what is appropriate will vary by the utility, and are equally at issue 
for self-report as for other methods of assessing impact.  The process of eliciting, from the 
respondent, what installations, modifications, and reconfigurations have been completed 
within a specified time period is important, but not subject to these guidelines that are 
oriented only to self-reported program influence. It may be important, however, to state that 
identified spillover measures and/or practices must be separated from measures and/or 
practices that have been claimed for direct program influence in other evaluations. To avoid 
double counting, this will probably require that the respondent be informed of the 
installations listed in program tracking systems that have been claimed in other evaluations 
for direct program influence to avoid double counting. 
 
When installations have been identified as potential spillover cases, the respondent must be 
asked about the level of utility influence on the selection of the energy-efficient version of 
the equipment installed, modified, or reconfigured. Because the evaluator has eliminated 
from consideration all equipment directly associated with the utility’s programs, any 
influence identified by the respondent will usually be indirect, i.e., less than concrete. It 
therefore becomes important to assess the credibility of any claims the respondent makes for 
utility influence on the decision. Usually this will mean asking questions that attempt to tie 
these “soft” claims to something more concrete. This might mean establishing the means by 
which the influence occurred, identifying third parties involved in the communication of 
information or in the influence of attitudes, and indicating a time period and context in which 
the influence took place. The more concrete the ties, the more persuasive the case for claimed 
influence will be.  
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